The rainbow numbers of paths in maximal bipartite planar graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Lei Ren, Yongxin Lan, Changqing Xu
{"title":"The rainbow numbers of paths in maximal bipartite planar graphs","authors":"Lei Ren,&nbsp;Yongxin Lan,&nbsp;Changqing Xu","doi":"10.1016/j.disc.2025.114596","DOIUrl":null,"url":null,"abstract":"<div><div>Given two graphs <em>G</em> and <em>T</em>, the rainbow number of <em>T</em> in <em>G</em>, denoted by <span><math><mi>r</mi><mi>b</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, is the minimum positive integer <em>t</em> such that, if <em>G</em> contains a copy of <em>T</em>, then every <em>t</em>-edge-coloring of <em>G</em> contains a rainbow copy of <em>T</em>. Given a family of graphs <span><math><mi>G</mi></math></span> and a graph <em>T</em>, if every graph in <span><math><mi>G</mi></math></span> contains a copy of <em>T</em>, then the rainbow number of <em>T</em> in <span><math><mi>G</mi></math></span>, denoted by <span><math><mi>r</mi><mi>b</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, is defined as <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mi>b</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mo>}</mo></math></span>. Given a graph <em>T</em>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> denote the family of all maximal bipartite planar graphs on <em>n</em> vertices that contain a copy of <em>T</em>. In this paper, we study the rainbow numbers of paths in maximal bipartite planar graphs, we get the exact value of <span><math><mi>r</mi><mi>b</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mi>ℓ</mi></math></span> and <span><math><mi>ℓ</mi><mo>≠</mo><mn>8</mn></math></span>, and the lower bound of <span><math><mi>r</mi><mi>b</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114596"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002043","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given two graphs G and T, the rainbow number of T in G, denoted by rb(G,T), is the minimum positive integer t such that, if G contains a copy of T, then every t-edge-coloring of G contains a rainbow copy of T. Given a family of graphs G and a graph T, if every graph in G contains a copy of T, then the rainbow number of T in G, denoted by rb(G,T), is defined as max{rb(G,T)|GG}. Given a graph T, let Hn(T) denote the family of all maximal bipartite planar graphs on n vertices that contain a copy of T. In this paper, we study the rainbow numbers of paths in maximal bipartite planar graphs, we get the exact value of rb(Hn(P),P) for n and 8, and the lower bound of rb(Hn(P8),P8) for all n8.
极大二部平面图中路径的彩虹数
给定两个图G和T,彩虹的T G,用rb (G, T)是最小的正整数T,如果G包含T的副本,然后每t-edge-coloring G的包含一个彩虹的副本T .给定一个家庭图G和T图,如果每一个图G包含T的副本,然后彩虹的T G,用rb (G, T)被定义为马克斯⁡{rb (G, T) | G∈G}。给定一个图T,设Hn(T)表示n个顶点上包含一个T副本的所有极大二部平面图族。本文研究了极大二部平面图中路径的彩虹数,得到了当n≥r,且r≠8时rb(Hn(P P),P P)的精确值,以及当n≥8时rb(Hn(P P),P P)的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信