European Journal of Combinatorics最新文献

筛选
英文 中文
Tight bound on the minimum degree to guarantee graphs forbidding some odd cycles to be bipartite 保证禁止某些奇数循环的图为两部分图的最小度数的严格约束
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-03-14 DOI: 10.1016/j.ejc.2025.104143
Xiaoli Yuan, Yuejian Peng
{"title":"Tight bound on the minimum degree to guarantee graphs forbidding some odd cycles to be bipartite","authors":"Xiaoli Yuan,&nbsp;Yuejian Peng","doi":"10.1016/j.ejc.2025.104143","DOIUrl":"10.1016/j.ejc.2025.104143","url":null,"abstract":"<div><div>Erdős and Simonovits asked the following question: For an integer <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and a family of non-bipartite graphs <span><math><mi>H</mi></math></span>, determine the infimum of <span><math><mi>α</mi></math></span> such that any <span><math><mi>H</mi></math></span>-free <span><math><mi>n</mi></math></span>-vertex graph with minimum degree at least <span><math><mrow><mi>α</mi><mi>n</mi></mrow></math></span> has chromatic number at most <span><math><mi>r</mi></math></span>. We answer this question for <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span> and any family consisting of odd cycles. Let <span><math><mi>C</mi></math></span> be a family of odd cycles in which <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is the shortest odd cycle not in <span><math><mi>C</mi></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is the longest odd cycle in <span><math><mi>C</mi></math></span>, we show that if <span><math><mi>G</mi></math></span> is an <span><math><mi>n</mi></math></span>-vertex <span><math><mi>C</mi></math></span>-free graph with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1000</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&gt;</mo><mo>max</mo><mrow><mo>{</mo><mi>n</mi><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mrow><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo><mn>2</mn><mi>n</mi><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> is bipartite. Moreover, this bound on the minimum degree is tight.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104143"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precoloring extension in planar near-Eulerian-triangulations 平面近欧拉三角剖分中的预着色扩展
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-03-07 DOI: 10.1016/j.ejc.2025.104138
Zdeněk Dvořák, Benjamin Moore , Michaela Seifrtová, Robert Šámal
{"title":"Precoloring extension in planar near-Eulerian-triangulations","authors":"Zdeněk Dvořák,&nbsp;Benjamin Moore ,&nbsp;Michaela Seifrtová,&nbsp;Robert Šámal","doi":"10.1016/j.ejc.2025.104138","DOIUrl":"10.1016/j.ejc.2025.104138","url":null,"abstract":"<div><div>We consider the 4-precoloring extension problem in <em>planar near-Eulerian- triangulations</em>, i.e., plane graphs where all faces except possibly for the outer one have length three, all vertices not incident with the outer face have even degree, and exactly the vertices incident with the outer face are precolored. We give a necessary topological condition for the precoloring to extend, and give a complete characterization when the outer face has length at most five and when all vertices of the outer face have odd degree and are colored using only three colors.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104138"},"PeriodicalIF":1.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge mappings of graphs: Turán type parameters 图的边缘映射:Turán类型参数
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-02-27 DOI: 10.1016/j.ejc.2025.104140
Yair Caro , Balázs Patkós , Zsolt Tuza , Máté Vizer
{"title":"Edge mappings of graphs: Turán type parameters","authors":"Yair Caro ,&nbsp;Balázs Patkós ,&nbsp;Zsolt Tuza ,&nbsp;Máté Vizer","doi":"10.1016/j.ejc.2025.104140","DOIUrl":"10.1016/j.ejc.2025.104140","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we address problems related to parameters concerning edge mappings of graphs. The quantity &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is defined to be the maximum number of edges in an &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-vertex graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that there exists a mapping &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and further in all copies &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Among other results, we determine &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; when &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a matching and &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is large enough.&lt;/div&gt;&lt;div&gt;As a related concept, we say that &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is unavoidable for &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; if for any mapping &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; there exists a copy &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∉&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The set of minimal unavoidable graphs for &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is denoted by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We prove that if &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a forest, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104140"},"PeriodicalIF":1.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injective edge colorings of degenerate graphs and the oriented chromatic number 退化图的内射边着色与取向色数
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-02-27 DOI: 10.1016/j.ejc.2025.104139
Peter Bradshaw , Alexander Clow , Jingwei Xu
{"title":"Injective edge colorings of degenerate graphs and the oriented chromatic number","authors":"Peter Bradshaw ,&nbsp;Alexander Clow ,&nbsp;Jingwei Xu","doi":"10.1016/j.ejc.2025.104139","DOIUrl":"10.1016/j.ejc.2025.104139","url":null,"abstract":"<div><div>Given a graph <span><math><mi>G</mi></math></span>, an <em>injective edge-coloring</em> of <span><math><mi>G</mi></math></span> is a function <span><math><mrow><mi>ψ</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mi>N</mi></mrow></math></span> such that if <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, then no third edge joins an endpoint of <span><math><mi>e</mi></math></span> and an endpoint of <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. The <em>injective chromatic index</em> of a graph <span><math><mi>G</mi></math></span>, written <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>inj</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum number of colors needed for an injective edge coloring of <span><math><mi>G</mi></math></span>. In this paper, we investigate the injective chromatic index of certain classes of degenerate graphs. First, we show that if <span><math><mi>G</mi></math></span> is a <span><math><mi>d</mi></math></span>-degenerate graph of maximum degree <span><math><mi>Δ</mi></math></span>, then <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>inj</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>log</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span>. Next, we show that if <span><math><mi>G</mi></math></span> is a graph of Euler genus <span><math><mi>g</mi></math></span>, then <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>inj</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mi>g</mi></mrow></math></span>, which is tight when <span><math><mi>G</mi></math></span> is a clique. Finally, we show that the oriented chromatic number of a graph is at most exponential in its injective chromatic index. Using this fact, we prove that the oriented chromatic number of a graph embedded on a surface of Euler genus <span><math><mi>g</mi></math></span> has oriented chromatic number at most <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mn>6400</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, improving the previously known upper bound of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> and resolving a conjecture of Aravind and Subramanian.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104139"},"PeriodicalIF":1.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Turán problem for a path and a clique 路径与团的广义Turán问题
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-02-27 DOI: 10.1016/j.ejc.2025.104137
Xiaona Fang , Xiutao Zhu , Yaojun Chen
{"title":"Generalized Turán problem for a path and a clique","authors":"Xiaona Fang ,&nbsp;Xiutao Zhu ,&nbsp;Yaojun Chen","doi":"10.1016/j.ejc.2025.104137","DOIUrl":"10.1016/j.ejc.2025.104137","url":null,"abstract":"<div><div>Let <span><math><mi>H</mi></math></span> be a family of graphs. The generalized Turán number <span><math><mrow><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the maximum number of copies of the clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in any <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graph. In this paper, we determine the value of <span><math><mrow><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> for sufficiently large <span><math><mi>n</mi></math></span> with an exceptional case, and characterize all corresponding extremal graphs. This generalizes and strengthens the results of Katona (2024) on <span><math><mrow><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>. For the exceptional case, we obtain a tight upper bound for <span><math><mrow><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> that confirms a conjecture on <span><math><mrow><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> posed by Katona and Xiao.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104137"},"PeriodicalIF":1.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planar Turán number of the 7-cycle 平面Turán 7周期数
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-02-18 DOI: 10.1016/j.ejc.2025.104134
Ruilin Shi , Zach Walsh , Xingxing Yu
{"title":"Planar Turán number of the 7-cycle","authors":"Ruilin Shi ,&nbsp;Zach Walsh ,&nbsp;Xingxing Yu","doi":"10.1016/j.ejc.2025.104134","DOIUrl":"10.1016/j.ejc.2025.104134","url":null,"abstract":"<div><div>The <em>planar Turán number</em> <span><math><mrow><msub><mrow><mo>ex</mo></mrow><mrow><mi>P</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>H</mi></math></span> is the maximum number of edges in an <span><math><mi>n</mi></math></span>-vertex planar graph without <span><math><mi>H</mi></math></span> as a subgraph. Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> denote the cycle of length <span><math><mi>ℓ</mi></math></span>. The planar Turán number <span><math><mrow><msub><mrow><mo>ex</mo></mrow><mrow><mi>P</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is known when <span><math><mrow><mi>ℓ</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, and is expected to behave differently when <span><math><mrow><mi>ℓ</mi><mo>≥</mo><mn>11</mn></mrow></math></span>. We prove that <span><math><mrow><msub><mrow><mo>ex</mo></mrow><mrow><mi>P</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>18</mn><mi>n</mi></mrow><mrow><mn>7</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>48</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>39</mn></mrow></math></span>, and show that equality holds for infinitely many integers <span><math><mi>n</mi></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104134"},"PeriodicalIF":1.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143429543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral Turán problem of non-bipartite graphs: Forbidden books 非二部图的谱Turán问题:禁书
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-02-16 DOI: 10.1016/j.ejc.2025.104136
Ruifang Liu, Lu Miao
{"title":"Spectral Turán problem of non-bipartite graphs: Forbidden books","authors":"Ruifang Liu,&nbsp;Lu Miao","doi":"10.1016/j.ejc.2025.104136","DOIUrl":"10.1016/j.ejc.2025.104136","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A book graph &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is a set of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; triangles with a common edge, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is an integer. Zhai and Lin (2023) proved that for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;13&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, if &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-free graph of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, with equality if and only if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;≅&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Note that the extremal graph &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is bipartite. Motivated by the above elegant result, we investigate the spectral Turán problem of non-bipartite &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-free graphs of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. For &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, Lin et al. (2021) provided a complete solution and proved a nice result: If &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a non-bipartite triangle-free graph of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, with equality if and only if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;≅&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the graph","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104136"},"PeriodicalIF":1.0,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143422529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On degree powers and counting stars in F-free graphs 论无f图中的次幂和计数星
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-02-13 DOI: 10.1016/j.ejc.2025.104135
Dániel Gerbner
{"title":"On degree powers and counting stars in F-free graphs","authors":"Dániel Gerbner","doi":"10.1016/j.ejc.2025.104135","DOIUrl":"10.1016/j.ejc.2025.104135","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Given a positive integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with degree sequence &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, we define &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ex&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the largest value of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is an &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-free graph. We show that if &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; has a color-critical edge, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ex&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for a complete &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-partite graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (this was known for cliques and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;). We obtain exact results for several other non-bipartite graphs and also determine &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ex&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We also give simple proofs of multiple known results.&lt;/div&gt;&lt;div&gt;Our key observation is the connection to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ex&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, which is the largest number of copies of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-free graphs, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is the star with &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; leaves. We explore this connection and apply methods from the study of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ex&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;m","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104135"},"PeriodicalIF":1.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-trivial r-wise agreeing families 非平凡的r明智的同意家庭
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-02-11 DOI: 10.1016/j.ejc.2025.104129
Peter Frankl , Andrey Kupavskii
{"title":"Non-trivial r-wise agreeing families","authors":"Peter Frankl ,&nbsp;Andrey Kupavskii","doi":"10.1016/j.ejc.2025.104129","DOIUrl":"10.1016/j.ejc.2025.104129","url":null,"abstract":"<div><div>A family of subsets of <span><math><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></math></span> is <span><math><mi>r</mi></math></span>-wise agreeing if for any <span><math><mi>r</mi></math></span> sets from the family there is an element <span><math><mi>x</mi></math></span> that is either contained in all or contained in none of the <span><math><mi>r</mi></math></span> sets. The study of such families is motivated by questions in discrete optimization. In this paper, we determine the size of the largest non-trivial <span><math><mi>r</mi></math></span>-wise agreeing family. This can be seen as a generalization of the classical Brace–Daykin theorem.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104129"},"PeriodicalIF":1.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Frank number and nowhere-zero flows on graphs 弗兰克数和零在图上流动
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2025-02-11 DOI: 10.1016/j.ejc.2025.104127
Jan Goedgebeur , Edita Máčajová , Jarne Renders
{"title":"The Frank number and nowhere-zero flows on graphs","authors":"Jan Goedgebeur ,&nbsp;Edita Máčajová ,&nbsp;Jarne Renders","doi":"10.1016/j.ejc.2025.104127","DOIUrl":"10.1016/j.ejc.2025.104127","url":null,"abstract":"<div><div>An edge <span><math><mi>e</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is called <em>deletable</em> for some orientation <span><math><mi>o</mi></math></span> if the restriction of <span><math><mi>o</mi></math></span> to <span><math><mrow><mi>G</mi><mo>−</mo><mi>e</mi></mrow></math></span> is a strong orientation. Inspired by a problem of Frank, in 2021 Hörsch and Szigeti proposed a new parameter for 3-edge-connected graphs, called the Frank number, which refines <span><math><mi>k</mi></math></span>-edge-connectivity. The <em>Frank number</em> is defined as the minimum number of orientations of <span><math><mi>G</mi></math></span> for which every edge of <span><math><mi>G</mi></math></span> is deletable in at least one of them. They showed that every 3-edge-connected graph has Frank number at most 7 and that in case these graphs are also 5-edge-colourable the parameter is at most 3. Here we strengthen both results by showing that every 3-edge-connected graph has Frank number at most 4 and that every graph which is 3-edge-connected and 3-edge-colourable has Frank number 2. The latter also confirms a conjecture by Barát and Blázsik. Furthermore, we prove two sufficient conditions for cubic graphs to have Frank number 2 and use them in an algorithm to computationally show that the Petersen graph is the only cyclically 4-edge-connected cubic graph up to 36 vertices having Frank number greater than 2.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104127"},"PeriodicalIF":1.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信