The bunkbed conjecture is not robust to generalisation

IF 1 3区 数学 Q1 MATHEMATICS
Lawrence Hollom
{"title":"The bunkbed conjecture is not robust to generalisation","authors":"Lawrence Hollom","doi":"10.1016/j.ejc.2025.104188","DOIUrl":null,"url":null,"abstract":"<div><div>The bunkbed conjecture, which has featured in the folklore of probability theory since at least 1985, concerns bond percolation on the product graph <span><math><mrow><mi>G</mi><mo>□</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. We have two copies <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of <span><math><mi>G</mi></math></span>, and if <span><math><msup><mrow><mi>x</mi></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></msup></math></span> and <span><math><msup><mrow><mi>x</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></math></span> are the copies of a vertex <span><math><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> respectively, then edge <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span> is present. The conjecture states that, for vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, percolation from <span><math><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></msup></math></span> to <span><math><msup><mrow><mi>v</mi></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></msup></math></span> is at least as likely as percolation from <span><math><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></msup></math></span> to <span><math><msup><mrow><mi>v</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></math></span>.</div><div>In this paper we consider three natural generalisations of the bunkbed conjecture; to site percolation, to hypergraphs, and to directed graphs. Our main aim is to show that all these generalisations are false, and to this end we construct a sequence of counterexamples to these statements. However, we also consider under what extra conditions these generalisations might hold, and give some classes of graph for which the bunkbed conjecture for site percolation does hold.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104188"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000733","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The bunkbed conjecture, which has featured in the folklore of probability theory since at least 1985, concerns bond percolation on the product graph GK2. We have two copies G0 and G1 of G, and if x(0) and x(1) are the copies of a vertex xV(G) in G0 and G1 respectively, then edge x(0)x(1) is present. The conjecture states that, for vertices u,vV(G), percolation from u(0) to v(0) is at least as likely as percolation from u(0) to v(1).
In this paper we consider three natural generalisations of the bunkbed conjecture; to site percolation, to hypergraphs, and to directed graphs. Our main aim is to show that all these generalisations are false, and to this end we construct a sequence of counterexamples to these statements. However, we also consider under what extra conditions these generalisations might hold, and give some classes of graph for which the bunkbed conjecture for site percolation does hold.
双层猜想对泛化不具有鲁棒性
至少从1985年起,在概率论的民间传说中就出现了双层猜想,它涉及乘积图G□K2上的键渗透。我们有G的两个副本G0和G1,如果x(0)和x(1)分别是顶点x∈V(G)在G0和G1中的副本,则边x(0)x(1)存在。该猜想表明,对于顶点u,v∈v(G),从u(0)到v(0)的渗透至少与从u(0)到v(1)的渗透一样可能。本文考虑了铺层猜想的三种自然推广;站点渗透、超图和有向图。我们的主要目的是证明所有这些概括都是错误的,为此我们构造了一系列反例来反驳这些陈述。然而,我们也考虑了在什么额外的条件下这些推广可能成立,并给出了一些类别的图,在这些类别的图中,站点渗透的分层猜想确实成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信