European Journal of Combinatorics最新文献

筛选
英文 中文
First order logic and twin-width in tournaments and dense oriented graphs 竞赛图和密集面向图中的一阶逻辑和双宽度
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-10-10 DOI: 10.1016/j.ejc.2025.104247
Colin Geniet , Stéphan Thomassé
{"title":"First order logic and twin-width in tournaments and dense oriented graphs","authors":"Colin Geniet ,&nbsp;Stéphan Thomassé","doi":"10.1016/j.ejc.2025.104247","DOIUrl":"10.1016/j.ejc.2025.104247","url":null,"abstract":"<div><div>We characterise the classes of tournaments with tractable first-order model checking. For every hereditary class of tournaments <span><math><mi>T</mi></math></span>, first-order model checking is either fixed parameter tractable or <span><math><mrow><mtext>AW</mtext><mrow><mo>[</mo><mo>∗</mo><mo>]</mo></mrow></mrow></math></span>-hard. This dichotomy coincides with the fact that <span><math><mi>T</mi></math></span> has either bounded or unbounded twin-width, and that the growth of <span><math><mi>T</mi></math></span> is either at most exponential or at least factorial. From the model-theoretic point of view, we show that NIP classes of tournaments coincide with bounded twin-width. Twin-width is also characterised by three infinite families of obstructions: <span><math><mi>T</mi></math></span> has bounded twin-width if and only if it excludes at least one tournament from each family. This generalises results of Bonnet et al. on ordered graphs.</div><div>The key for these results is a polynomial time algorithm that takes as input a tournament <span><math><mi>T</mi></math></span> and computes a linear order <span><math><mo>&lt;</mo></math></span> on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> such that the twin-width of the birelation <span><math><mrow><mo>(</mo><mi>T</mi><mo>,</mo><mo>&lt;</mo><mo>)</mo></mrow></math></span> is at most some function of the twin-width of <span><math><mi>T</mi></math></span>. Since approximating twin-width can be done in polynomial time for an ordered structure <span><math><mrow><mo>(</mo><mi>T</mi><mo>,</mo><mo>&lt;</mo><mo>)</mo></mrow></math></span>, this provides a polynomial time approximation of twin-width for tournaments.</div><div>Our results extend to oriented graphs with stable sets of bounded size, which may also be augmented by arbitrary binary relations.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104247"},"PeriodicalIF":0.9,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145247904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flips in two-dimensional hypertriangulations 二维超三角剖分中的翻转
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-10-10 DOI: 10.1016/j.ejc.2025.104248
Herbert Edelsbrunner , Alexey Garber , Mohadese Ghafari , Teresa Heiss , Morteza Saghafian
{"title":"Flips in two-dimensional hypertriangulations","authors":"Herbert Edelsbrunner ,&nbsp;Alexey Garber ,&nbsp;Mohadese Ghafari ,&nbsp;Teresa Heiss ,&nbsp;Morteza Saghafian","doi":"10.1016/j.ejc.2025.104248","DOIUrl":"10.1016/j.ejc.2025.104248","url":null,"abstract":"<div><div>We study flips in hypertriangulations of planar points sets. Here a level-<span><math><mi>k</mi></math></span> hypertriangulation of <span><math><mi>n</mi></math></span> points in the plane is a subdivision induced by the projection of a <span><math><mi>k</mi></math></span>-hypersimplex, which is the convex hull of the barycenters of the <span><math><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional faces of the standard <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-simplex. In particular, we introduce four types of flips and prove that the level-2 hypertriangulations are connected by these flips.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104248"},"PeriodicalIF":0.9,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145247903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A proof of some conjectures of Garvan on partitions rank and crank inequalities 关于分区秩不等式和曲柄不等式的Garvan猜想的证明
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-10-09 DOI: 10.1016/j.ejc.2025.104253
Renrong Mao, Jie Huang, Fan Yang
{"title":"A proof of some conjectures of Garvan on partitions rank and crank inequalities","authors":"Renrong Mao,&nbsp;Jie Huang,&nbsp;Fan Yang","doi":"10.1016/j.ejc.2025.104253","DOIUrl":"10.1016/j.ejc.2025.104253","url":null,"abstract":"<div><div>In 1988, Garvan made conjectures on inequalities satisfied by ranks and cranks modulo 5 and 7. We obtain improvements to two of these inequalities in this paper.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104253"},"PeriodicalIF":0.9,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On two conjectures of Shallit about Thue–Morse-like sequences Shallit关于Thue-Morse-like序列的两个猜想
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-10-09 DOI: 10.1016/j.ejc.2025.104250
Lubomíra Dvořáková , Savinien Kreczman , Edita Pelantová
{"title":"On two conjectures of Shallit about Thue–Morse-like sequences","authors":"Lubomíra Dvořáková ,&nbsp;Savinien Kreczman ,&nbsp;Edita Pelantová","doi":"10.1016/j.ejc.2025.104250","DOIUrl":"10.1016/j.ejc.2025.104250","url":null,"abstract":"<div><div>We study a class of infinite words <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi><mo>,</mo><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, recently introduced by J. Shallit. This class includes the Thue–Morse sequence <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, the Fibonacci–Thue–Morse sequence <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and the Allouche–Johnson sequence <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Shallit stated and for <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></math></span> proved two conjectures on properties of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. The first conjecture concerns the factor complexity, the second one the critical exponent of these words. We confirm the validity of both conjectures for every <span><math><mi>k</mi></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104250"},"PeriodicalIF":0.9,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145247905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth rates of permutations with given descent or peak set 给定下降集或峰值集的排列生长速率
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-09-30 DOI: 10.1016/j.ejc.2025.104246
Mohamed Omar, Justin M. Troyka
{"title":"Growth rates of permutations with given descent or peak set","authors":"Mohamed Omar,&nbsp;Justin M. Troyka","doi":"10.1016/j.ejc.2025.104246","DOIUrl":"10.1016/j.ejc.2025.104246","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Given a set &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, consider the sequences &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; where for any &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; respectively count the number of permutations in the symmetric group &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; whose descent set (respectively peak set) is &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We investigate the growth rates &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;gr&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;lim&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;!&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;gr&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;lim&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;!&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; over all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Our main contributions are two-fold. Firstly, we prove that the numbers &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;gr&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; over all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are exactly the interval &lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;. To do so, we construct an algorithm that explicitly builds &lt;span&gt;&lt;math&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; for any desired limit &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in the interval. Secondly, we prove that the numbers &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;gr&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for periodic sets &lt;span&gt;&lt;math&gt;","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104246"},"PeriodicalIF":0.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145220359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the biases and asymptotics of partitions with finite choices of parts 部分选择有限的分区的偏置与渐近性
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-09-22 DOI: 10.1016/j.ejc.2025.104245
Jiyou Li, Sicheng Zhao
{"title":"On the biases and asymptotics of partitions with finite choices of parts","authors":"Jiyou Li,&nbsp;Sicheng Zhao","doi":"10.1016/j.ejc.2025.104245","DOIUrl":"10.1016/j.ejc.2025.104245","url":null,"abstract":"<div><div>Biases in integer partitions have been studied recently. For three disjoint subsets <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> of positive integers, let <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of partitions of <span><math><mi>n</mi></math></span> with parts from <span><math><mrow><mi>R</mi><mo>∪</mo><mi>S</mi><mo>∪</mo><mi>I</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>&gt;</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of such partitions with a greater number of parts in <span><math><mi>R</mi></math></span> than that in <span><math><mi>S</mi></math></span>. In this paper, in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> are finite, we obtain an explicit formula of the asymptotic ratio of <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>&gt;</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. The key technique for computing this ratio is to estimate a partition number at the volume of a certain polytope. A conjecture is proposed in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi></mrow></math></span> are certain infinite arithmetic progressions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104245"},"PeriodicalIF":0.9,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145118229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher q-continued fractions 高q连分数
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-09-20 DOI: 10.1016/j.ejc.2025.104244
Amanda Burcroff , Nicholas Ovenhouse , Ralf Schiffler , Sylvester W. Zhang
{"title":"Higher q-continued fractions","authors":"Amanda Burcroff ,&nbsp;Nicholas Ovenhouse ,&nbsp;Ralf Schiffler ,&nbsp;Sylvester W. Zhang","doi":"10.1016/j.ejc.2025.104244","DOIUrl":"10.1016/j.ejc.2025.104244","url":null,"abstract":"<div><div>We introduce a <span><math><mi>q</mi></math></span>-analog of the higher continued fractions introduced by the last three authors in a previous work (together with Gregg Musiker), which are simultaneously a generalization of the <span><math><mi>q</mi></math></span>-rational numbers of Morier-Genoud and Ovsienko. They are defined as ratios of generating functions for <span><math><mi>P</mi></math></span>-partitions on certain posets. We give matrix formulas for computing them, which generalize previous results in the <span><math><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></math></span> case. We also show that certain properties enjoyed by the <span><math><mi>q</mi></math></span>-rationals are also satisfied by our higher versions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104244"},"PeriodicalIF":0.9,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A counterexample to the Ross–Yong conjecture for Grothendieck polynomials Grothendieck多项式的Ross-Yong猜想的一个反例
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-09-17 DOI: 10.1016/j.ejc.2025.104241
Colleen Robichaux
{"title":"A counterexample to the Ross–Yong conjecture for Grothendieck polynomials","authors":"Colleen Robichaux","doi":"10.1016/j.ejc.2025.104241","DOIUrl":"10.1016/j.ejc.2025.104241","url":null,"abstract":"<div><div>We give a minimal counterexample for a conjecture of Ross and Yong (2015) which proposes a K-Kohnert rule for Grothendieck polynomials. We conjecture a revised version of this rule. We then prove both rules hold in the 321-avoiding case.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104241"},"PeriodicalIF":0.9,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial expressions for the dimensions of the representations of symmetric groups and restricted standard Young tableaux 对称群和限制标准杨氏表的表示维数的多项式表达式
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-09-17 DOI: 10.1016/j.ejc.2025.104242
Avichai Cohen, Shaul Zemel
{"title":"Polynomial expressions for the dimensions of the representations of symmetric groups and restricted standard Young tableaux","authors":"Avichai Cohen,&nbsp;Shaul Zemel","doi":"10.1016/j.ejc.2025.104242","DOIUrl":"10.1016/j.ejc.2025.104242","url":null,"abstract":"<div><div>Given a partition <span><math><mi>λ</mi></math></span> of a number <span><math><mi>k</mi></math></span>, it is known that by adding a long line of length <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span>, the dimension of the associated representation of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an integer-valued polynomial of degree <span><math><mi>k</mi></math></span> in <span><math><mi>n</mi></math></span>. We show that its expansion in the binomial basis is bounded by the length of <span><math><mi>λ</mi></math></span>, and that the resulting coefficient of index <span><math><mi>h</mi></math></span>, with alternating signs, counts the standard Young tableaux of shape <span><math><mi>λ</mi></math></span> in which a given collection of consecutive <span><math><mi>h</mi></math></span> numbers lie in increasing rows. We also construct bijections in order to demonstrate explicitly that this number is indeed independent of the set of consecutive <span><math><mi>h</mi></math></span> numbers used.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104242"},"PeriodicalIF":0.9,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saturation results around the Erdős–Szekeres problem 饱和度是围绕Erdős-Szekeres问题产生的
IF 0.9 3区 数学
European Journal of Combinatorics Pub Date : 2025-09-16 DOI: 10.1016/j.ejc.2025.104236
Gábor Damásdi , Zichao Dong , Manfred Scheucher , Ji Zeng
{"title":"Saturation results around the Erdős–Szekeres problem","authors":"Gábor Damásdi ,&nbsp;Zichao Dong ,&nbsp;Manfred Scheucher ,&nbsp;Ji Zeng","doi":"10.1016/j.ejc.2025.104236","DOIUrl":"10.1016/j.ejc.2025.104236","url":null,"abstract":"<div><div>In this paper, we consider saturation problems related to the celebrated Erdős–Szekeres convex polygon problem. For each <span><math><mrow><mi>n</mi><mo>≥</mo><mn>7</mn></mrow></math></span>, we construct a planar point set of size <span><math><mrow><mrow><mo>(</mo><mn>7</mn><mo>/</mo><mn>8</mn><mo>)</mo></mrow><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> which is saturated for convex <span><math><mi>n</mi></math></span>-gons. That is, the set contains no <span><math><mi>n</mi></math></span> points in convex position while the addition of any new point creates such a configuration. This demonstrates that the saturation number is smaller than the Ramsey number for the Erdős–Szekeres problem. The proof also shows that the original Erdős–Szekeres construction is indeed saturated. Our construction is based on a similar improvement for the saturation version of the cups-versus-caps theorem. Moreover, we consider the generalization of the cups-versus-caps theorem to monotone paths in ordered hypergraphs. In contrast to the geometric setting, we show that this abstract saturation number is always equal to the corresponding Ramsey number.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104236"},"PeriodicalIF":0.9,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信