部分选择有限的分区的偏置与渐近性

IF 0.9 3区 数学 Q1 MATHEMATICS
Jiyou Li, Sicheng Zhao
{"title":"部分选择有限的分区的偏置与渐近性","authors":"Jiyou Li,&nbsp;Sicheng Zhao","doi":"10.1016/j.ejc.2025.104245","DOIUrl":null,"url":null,"abstract":"<div><div>Biases in integer partitions have been studied recently. For three disjoint subsets <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> of positive integers, let <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of partitions of <span><math><mi>n</mi></math></span> with parts from <span><math><mrow><mi>R</mi><mo>∪</mo><mi>S</mi><mo>∪</mo><mi>I</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>&gt;</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of such partitions with a greater number of parts in <span><math><mi>R</mi></math></span> than that in <span><math><mi>S</mi></math></span>. In this paper, in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> are finite, we obtain an explicit formula of the asymptotic ratio of <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>&gt;</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. The key technique for computing this ratio is to estimate a partition number at the volume of a certain polytope. A conjecture is proposed in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi></mrow></math></span> are certain infinite arithmetic progressions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104245"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the biases and asymptotics of partitions with finite choices of parts\",\"authors\":\"Jiyou Li,&nbsp;Sicheng Zhao\",\"doi\":\"10.1016/j.ejc.2025.104245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biases in integer partitions have been studied recently. For three disjoint subsets <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> of positive integers, let <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of partitions of <span><math><mi>n</mi></math></span> with parts from <span><math><mrow><mi>R</mi><mo>∪</mo><mi>S</mi><mo>∪</mo><mi>I</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>&gt;</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of such partitions with a greater number of parts in <span><math><mi>R</mi></math></span> than that in <span><math><mi>S</mi></math></span>. In this paper, in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> are finite, we obtain an explicit formula of the asymptotic ratio of <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>&gt;</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. The key technique for computing this ratio is to estimate a partition number at the volume of a certain polytope. A conjecture is proposed in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi></mrow></math></span> are certain infinite arithmetic progressions.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104245\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001349\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001349","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对整数分区中的偏差进行了研究。对于正整数的三个不相交子集R,S,I,设pRSI(n)为n的部分来自R∪S∪I和pR>;S的分区数,I(n)为R中的部分数大于S中的部分数的分区数。本文在R,S,I是有限的情况下,得到了pR>;S,I(n)与pRSI(n)的渐近比的显式公式。计算该比率的关键技术是在某个多面体的体积上估计分区数。在R,S是某些无限等差数列的情况下,提出了一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the biases and asymptotics of partitions with finite choices of parts
Biases in integer partitions have been studied recently. For three disjoint subsets R,S,I of positive integers, let pRSI(n) be the number of partitions of n with parts from RSI and pR>S,I(n) be the number of such partitions with a greater number of parts in R than that in S. In this paper, in the case that R,S,I are finite, we obtain an explicit formula of the asymptotic ratio of pR>S,I(n) to pRSI(n). The key technique for computing this ratio is to estimate a partition number at the volume of a certain polytope. A conjecture is proposed in the case that R,S are certain infinite arithmetic progressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信