{"title":"部分选择有限的分区的偏置与渐近性","authors":"Jiyou Li, Sicheng Zhao","doi":"10.1016/j.ejc.2025.104245","DOIUrl":null,"url":null,"abstract":"<div><div>Biases in integer partitions have been studied recently. For three disjoint subsets <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> of positive integers, let <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of partitions of <span><math><mi>n</mi></math></span> with parts from <span><math><mrow><mi>R</mi><mo>∪</mo><mi>S</mi><mo>∪</mo><mi>I</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>></mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of such partitions with a greater number of parts in <span><math><mi>R</mi></math></span> than that in <span><math><mi>S</mi></math></span>. In this paper, in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> are finite, we obtain an explicit formula of the asymptotic ratio of <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>></mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. The key technique for computing this ratio is to estimate a partition number at the volume of a certain polytope. A conjecture is proposed in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi></mrow></math></span> are certain infinite arithmetic progressions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104245"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the biases and asymptotics of partitions with finite choices of parts\",\"authors\":\"Jiyou Li, Sicheng Zhao\",\"doi\":\"10.1016/j.ejc.2025.104245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biases in integer partitions have been studied recently. For three disjoint subsets <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> of positive integers, let <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of partitions of <span><math><mi>n</mi></math></span> with parts from <span><math><mrow><mi>R</mi><mo>∪</mo><mi>S</mi><mo>∪</mo><mi>I</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>></mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of such partitions with a greater number of parts in <span><math><mi>R</mi></math></span> than that in <span><math><mi>S</mi></math></span>. In this paper, in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></math></span> are finite, we obtain an explicit formula of the asymptotic ratio of <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mo>></mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>R</mi><mi>S</mi><mi>I</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. The key technique for computing this ratio is to estimate a partition number at the volume of a certain polytope. A conjecture is proposed in the case that <span><math><mrow><mi>R</mi><mo>,</mo><mi>S</mi></mrow></math></span> are certain infinite arithmetic progressions.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104245\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001349\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001349","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the biases and asymptotics of partitions with finite choices of parts
Biases in integer partitions have been studied recently. For three disjoint subsets of positive integers, let be the number of partitions of with parts from and be the number of such partitions with a greater number of parts in than that in . In this paper, in the case that are finite, we obtain an explicit formula of the asymptotic ratio of to . The key technique for computing this ratio is to estimate a partition number at the volume of a certain polytope. A conjecture is proposed in the case that are certain infinite arithmetic progressions.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.