{"title":"给定下降集或峰值集的排列生长速率","authors":"Mohamed Omar, Justin M. Troyka","doi":"10.1016/j.ejc.2025.104246","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span>, consider the sequences <span><math><mrow><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>}</mo></mrow><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> where for any <span><math><mi>n</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> respectively count the number of permutations in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whose descent set (respectively peak set) is <span><math><mrow><mi>I</mi><mo>∩</mo><mrow><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. We investigate the growth rates <span><math><mrow><mo>gr</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mfenced><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>!</mo></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mo>gr</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mfenced><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>!</mo></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math></span> over all <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span>. Our main contributions are two-fold. Firstly, we prove that the numbers <span><math><mrow><mo>gr</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> over all <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span> are exactly the interval <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>2</mn><mo>/</mo><mi>π</mi></mrow></mfenced></math></span>. To do so, we construct an algorithm that explicitly builds <span><math><mi>I</mi></math></span> for any desired limit <span><math><mi>L</mi></math></span> in the interval. Secondly, we prove that the numbers <span><math><mrow><mo>gr</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> for periodic sets <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span> form a dense set in <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mroot><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mroot></mrow></mfenced></math></span>. We do this by explicitly finding, for any prescribed <span><math><mi>L</mi></math></span> in the interval, a set <span><math><mi>I</mi></math></span> whose corresponding growth rate is arbitrarily close to <span><math><mi>L</mi></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104246"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth rates of permutations with given descent or peak set\",\"authors\":\"Mohamed Omar, Justin M. Troyka\",\"doi\":\"10.1016/j.ejc.2025.104246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a set <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span>, consider the sequences <span><math><mrow><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>}</mo></mrow><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> where for any <span><math><mi>n</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> respectively count the number of permutations in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whose descent set (respectively peak set) is <span><math><mrow><mi>I</mi><mo>∩</mo><mrow><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. We investigate the growth rates <span><math><mrow><mo>gr</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mfenced><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>!</mo></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mo>gr</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mfenced><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>!</mo></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math></span> over all <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span>. Our main contributions are two-fold. Firstly, we prove that the numbers <span><math><mrow><mo>gr</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> over all <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span> are exactly the interval <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>2</mn><mo>/</mo><mi>π</mi></mrow></mfenced></math></span>. To do so, we construct an algorithm that explicitly builds <span><math><mi>I</mi></math></span> for any desired limit <span><math><mi>L</mi></math></span> in the interval. Secondly, we prove that the numbers <span><math><mrow><mo>gr</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> for periodic sets <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span> form a dense set in <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mroot><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mroot></mrow></mfenced></math></span>. We do this by explicitly finding, for any prescribed <span><math><mi>L</mi></math></span> in the interval, a set <span><math><mi>I</mi></math></span> whose corresponding growth rate is arbitrarily close to <span><math><mi>L</mi></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104246\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001350\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001350","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Growth rates of permutations with given descent or peak set
Given a set , consider the sequences where for any , and respectively count the number of permutations in the symmetric group whose descent set (respectively peak set) is . We investigate the growth rates and over all . Our main contributions are two-fold. Firstly, we prove that the numbers over all are exactly the interval . To do so, we construct an algorithm that explicitly builds for any desired limit in the interval. Secondly, we prove that the numbers for periodic sets form a dense set in . We do this by explicitly finding, for any prescribed in the interval, a set whose corresponding growth rate is arbitrarily close to .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.