给定下降集或峰值集的排列生长速率

IF 0.9 3区 数学 Q1 MATHEMATICS
Mohamed Omar, Justin M. Troyka
{"title":"给定下降集或峰值集的排列生长速率","authors":"Mohamed Omar,&nbsp;Justin M. Troyka","doi":"10.1016/j.ejc.2025.104246","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span>, consider the sequences <span><math><mrow><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>}</mo></mrow><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> where for any <span><math><mi>n</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> respectively count the number of permutations in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whose descent set (respectively peak set) is <span><math><mrow><mi>I</mi><mo>∩</mo><mrow><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. We investigate the growth rates <span><math><mrow><mo>gr</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mfenced><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>!</mo></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mo>gr</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mfenced><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>!</mo></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math></span> over all <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span>. Our main contributions are two-fold. Firstly, we prove that the numbers <span><math><mrow><mo>gr</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> over all <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span> are exactly the interval <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>2</mn><mo>/</mo><mi>π</mi></mrow></mfenced></math></span>. To do so, we construct an algorithm that explicitly builds <span><math><mi>I</mi></math></span> for any desired limit <span><math><mi>L</mi></math></span> in the interval. Secondly, we prove that the numbers <span><math><mrow><mo>gr</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> for periodic sets <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span> form a dense set in <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mroot><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mroot></mrow></mfenced></math></span>. We do this by explicitly finding, for any prescribed <span><math><mi>L</mi></math></span> in the interval, a set <span><math><mi>I</mi></math></span> whose corresponding growth rate is arbitrarily close to <span><math><mi>L</mi></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104246"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth rates of permutations with given descent or peak set\",\"authors\":\"Mohamed Omar,&nbsp;Justin M. Troyka\",\"doi\":\"10.1016/j.ejc.2025.104246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a set <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span>, consider the sequences <span><math><mrow><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>}</mo></mrow><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> where for any <span><math><mi>n</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> respectively count the number of permutations in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whose descent set (respectively peak set) is <span><math><mrow><mi>I</mi><mo>∩</mo><mrow><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. We investigate the growth rates <span><math><mrow><mo>gr</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mfenced><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>!</mo></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mo>gr</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mfenced><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>!</mo></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math></span> over all <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span>. Our main contributions are two-fold. Firstly, we prove that the numbers <span><math><mrow><mo>gr</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> over all <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span> are exactly the interval <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>2</mn><mo>/</mo><mi>π</mi></mrow></mfenced></math></span>. To do so, we construct an algorithm that explicitly builds <span><math><mi>I</mi></math></span> for any desired limit <span><math><mi>L</mi></math></span> in the interval. Secondly, we prove that the numbers <span><math><mrow><mo>gr</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> for periodic sets <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>N</mi></mrow></math></span> form a dense set in <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mroot><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mroot></mrow></mfenced></math></span>. We do this by explicitly finding, for any prescribed <span><math><mi>L</mi></math></span> in the interval, a set <span><math><mi>I</mi></math></span> whose corresponding growth rate is arbitrarily close to <span><math><mi>L</mi></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104246\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001350\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001350","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定集合I∩[N−1],考虑序列{dn(I)}、{pn(I)},其中对任意N、dn(I)、pn(I)分别计算对称群Sn中下降集(峰值集)为I∩[N−1]的置换个数。我们研究了增长率grdn(I)=limn→∞dn(I)/n!1/n和grpn(I)=limn→∞pn(I)/n!1/n除以所有I个天大的n。我们的主要贡献有两方面。首先,证明了在所有I个≤N上的数grdn(I)正好是区间0,2/π。为此,我们构造了一个算法,该算法对区间内任何期望的极限L显式地构造I。其次,证明了周期集I≤N的数grpn(I)在0,1/33中形成一个稠密集。我们通过显式地找到,对于区间内任意规定的L,其相应增长率任意接近于L的集合I来做到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth rates of permutations with given descent or peak set
Given a set IN, consider the sequences {dn(I)},{pn(I)} where for any n, dn(I) and pn(I) respectively count the number of permutations in the symmetric group Sn whose descent set (respectively peak set) is I[n1]. We investigate the growth rates grdn(I)=limndn(I)/n!1/n and grpn(I)=limnpn(I)/n!1/n over all IN. Our main contributions are two-fold. Firstly, we prove that the numbers grdn(I) over all IN are exactly the interval 0,2/π. To do so, we construct an algorithm that explicitly builds I for any desired limit L in the interval. Secondly, we prove that the numbers grpn(I) for periodic sets IN form a dense set in 0,1/33. We do this by explicitly finding, for any prescribed L in the interval, a set I whose corresponding growth rate is arbitrarily close to L.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信