饱和度是围绕Erdős-Szekeres问题产生的

IF 0.9 3区 数学 Q1 MATHEMATICS
Gábor Damásdi , Zichao Dong , Manfred Scheucher , Ji Zeng
{"title":"饱和度是围绕Erdős-Szekeres问题产生的","authors":"Gábor Damásdi ,&nbsp;Zichao Dong ,&nbsp;Manfred Scheucher ,&nbsp;Ji Zeng","doi":"10.1016/j.ejc.2025.104236","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider saturation problems related to the celebrated Erdős–Szekeres convex polygon problem. For each <span><math><mrow><mi>n</mi><mo>≥</mo><mn>7</mn></mrow></math></span>, we construct a planar point set of size <span><math><mrow><mrow><mo>(</mo><mn>7</mn><mo>/</mo><mn>8</mn><mo>)</mo></mrow><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> which is saturated for convex <span><math><mi>n</mi></math></span>-gons. That is, the set contains no <span><math><mi>n</mi></math></span> points in convex position while the addition of any new point creates such a configuration. This demonstrates that the saturation number is smaller than the Ramsey number for the Erdős–Szekeres problem. The proof also shows that the original Erdős–Szekeres construction is indeed saturated. Our construction is based on a similar improvement for the saturation version of the cups-versus-caps theorem. Moreover, we consider the generalization of the cups-versus-caps theorem to monotone paths in ordered hypergraphs. In contrast to the geometric setting, we show that this abstract saturation number is always equal to the corresponding Ramsey number.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104236"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saturation results around the Erdős–Szekeres problem\",\"authors\":\"Gábor Damásdi ,&nbsp;Zichao Dong ,&nbsp;Manfred Scheucher ,&nbsp;Ji Zeng\",\"doi\":\"10.1016/j.ejc.2025.104236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider saturation problems related to the celebrated Erdős–Szekeres convex polygon problem. For each <span><math><mrow><mi>n</mi><mo>≥</mo><mn>7</mn></mrow></math></span>, we construct a planar point set of size <span><math><mrow><mrow><mo>(</mo><mn>7</mn><mo>/</mo><mn>8</mn><mo>)</mo></mrow><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> which is saturated for convex <span><math><mi>n</mi></math></span>-gons. That is, the set contains no <span><math><mi>n</mi></math></span> points in convex position while the addition of any new point creates such a configuration. This demonstrates that the saturation number is smaller than the Ramsey number for the Erdős–Szekeres problem. The proof also shows that the original Erdős–Szekeres construction is indeed saturated. Our construction is based on a similar improvement for the saturation version of the cups-versus-caps theorem. Moreover, we consider the generalization of the cups-versus-caps theorem to monotone paths in ordered hypergraphs. In contrast to the geometric setting, we show that this abstract saturation number is always equal to the corresponding Ramsey number.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104236\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001258\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001258","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑与著名的Erdős-Szekeres凸多边形问题相关的饱和问题。对于每个n≥7,我们构造一个大小为(7/8)·2n−2的平面点集,该点集对于凸n-gon是饱和的。也就是说,该集合不包含n个处于凸位置的点,而添加任何新点都会创建这样一个构型。这表明饱和数小于Erdős-Szekeres问题的Ramsey数。证明还表明,原来的Erdős-Szekeres结构确实是饱和的。我们的构造是基于杯子对帽子定理的饱和版本的类似改进。此外,我们考虑了cups- vs -caps定理在有序超图单调路径上的推广。与几何设置相反,我们证明了这个抽象饱和数总是等于相应的拉姆齐数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saturation results around the Erdős–Szekeres problem
In this paper, we consider saturation problems related to the celebrated Erdős–Szekeres convex polygon problem. For each n7, we construct a planar point set of size (7/8)2n2 which is saturated for convex n-gons. That is, the set contains no n points in convex position while the addition of any new point creates such a configuration. This demonstrates that the saturation number is smaller than the Ramsey number for the Erdős–Szekeres problem. The proof also shows that the original Erdős–Szekeres construction is indeed saturated. Our construction is based on a similar improvement for the saturation version of the cups-versus-caps theorem. Moreover, we consider the generalization of the cups-versus-caps theorem to monotone paths in ordered hypergraphs. In contrast to the geometric setting, we show that this abstract saturation number is always equal to the corresponding Ramsey number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信