European Journal of Combinatorics最新文献

筛选
英文 中文
Corrigendum to “Describing quasi-graphic matroids” [European J. Combin. 85 (2020) 103062] 对 "描述准图形矩阵 "的更正 [European J. Combin.
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-10 DOI: 10.1016/j.ejc.2024.104004
{"title":"Corrigendum to “Describing quasi-graphic matroids” [European J. Combin. 85 (2020) 103062]","authors":"","doi":"10.1016/j.ejc.2024.104004","DOIUrl":"10.1016/j.ejc.2024.104004","url":null,"abstract":"","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"122 ","pages":"Article 104004"},"PeriodicalIF":1.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000891/pdfft?md5=8f6dba2471a3e7b0d7d1cb3d4b1a88bf&pid=1-s2.0-S0195669824000891-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
t-sails and sparse hereditary classes of unbounded tree-width 无界树宽的 t 帆和稀疏遗传类
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-10 DOI: 10.1016/j.ejc.2024.104005
D. Cocks
{"title":"t-sails and sparse hereditary classes of unbounded tree-width","authors":"D. Cocks","doi":"10.1016/j.ejc.2024.104005","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.104005","url":null,"abstract":"<div><p>It has long been known that the following basic objects are obstructions to bounded tree-width: for arbitrarily large <span><math><mi>t</mi></math></span>, <span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span> the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span> a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall and <span><math><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></math></span> the line graph of a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall. We now add a further <em>boundary object</em> to this list, a <span><math><mi>t</mi></math></span>-<em>sail</em>. These results have been obtained by studying sparse hereditary <em>path-star</em> graph classes, each of which consists of the finite induced subgraphs of a single infinite graph whose edges can be partitioned into a path (or forest of paths) with a forest of stars, characterised by an infinite word over a possibly infinite alphabet. We show that a path-star class whose infinite graph has an unbounded number of stars, each of which connects an unbounded number of times to the path, has unbounded tree-width. In addition, we show that such a class is not a subclass of the hereditary class of circle graphs. We identify a collection of <em>nested</em> words with a recursive structure that exhibit interesting characteristics when used to define a path-star graph class. These graph classes do not contain any of the four basic obstructions but instead contain graphs that have large tree-width if and only if they contain arbitrarily large <span><math><mi>t</mi></math></span>-sails. We show that these classes are infinitely defined and, like classes of bounded degree or classes excluding a fixed minor, do not contain a minimal class of unbounded tree-width.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"122 ","pages":"Article 104005"},"PeriodicalIF":1.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000908/pdfft?md5=e4d9091488efe1ad037850e52d6372a3&pid=1-s2.0-S0195669824000908-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue dedicated to the memory of Pierre Rosenstiehl 纪念皮埃尔-罗森施蒂尔特刊
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103800
Robert Cori (Editors), Jaroslav Nešetřil, Patrice Ossona de Mendez
{"title":"Special Issue dedicated to the memory of Pierre Rosenstiehl","authors":"Robert Cori (Editors),&nbsp;Jaroslav Nešetřil,&nbsp;Patrice Ossona de Mendez","doi":"10.1016/j.ejc.2023.103800","DOIUrl":"10.1016/j.ejc.2023.103800","url":null,"abstract":"","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103800"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Permutation Tutte polynomial 置换图特多项式
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2024.104003
Csongor Beke , Gergely Kál Csáji , Péter Csikvári , Sára Pituk
{"title":"Permutation Tutte polynomial","authors":"Csongor Beke ,&nbsp;Gergely Kál Csáji ,&nbsp;Péter Csikvári ,&nbsp;Sára Pituk","doi":"10.1016/j.ejc.2024.104003","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.104003","url":null,"abstract":"<div><p>The classical Tutte polynomial is a two-variate polynomial <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to graphs or more generally, matroids. In this paper, we introduce a polynomial <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to a bipartite graph <span><math><mi>H</mi></math></span> that we call the permutation Tutte polynomial of the graph <span><math><mi>H</mi></math></span>. It turns out that <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> share many properties, and the permutation Tutte polynomial serves as a tool to study the classical Tutte polynomial. We discuss the analogues of Brylawsi’s identities and Conde–Merino–Welsh type inequalities. In particular, we will show that if <span><math><mi>H</mi></math></span> does not contain isolated vertices, then <span><span><span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span>which gives a short proof of the analogous result of Jackson: <span><span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span></span></span>\u0000for graphs without loops and bridges. We also give improvement on the constant 3 in this statement by showing that one can replace it with 2.9243.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"120 ","pages":"Article 104003"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wachs permutations, Bruhat order and weak order 瓦克斯排列、布鲁哈特阶和弱阶
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103804
Francesco Brenti , Paolo Sentinelli
{"title":"Wachs permutations, Bruhat order and weak order","authors":"Francesco Brenti ,&nbsp;Paolo Sentinelli","doi":"10.1016/j.ejc.2023.103804","DOIUrl":"10.1016/j.ejc.2023.103804","url":null,"abstract":"<div><p>We study the partial orders<span><span> induced on Wachs and signed Wachs permutations by the Bruhat and </span>weak orders<span> of the symmetric and hyperoctahedral groups. We show that these orders are graded, determine their rank function, characterize their ordering and covering relations, and compute their characteristic polynomials, when partially ordered by Bruhat order, and determine their structure explicitly when partially ordered by right weak order.</span></span></p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103804"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135849064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unambiguously coded shifts 编码明确的班次
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103812
Marie-Pierre Béal , Dominique Perrin , Antonio Restivo
{"title":"Unambiguously coded shifts","authors":"Marie-Pierre Béal ,&nbsp;Dominique Perrin ,&nbsp;Antonio Restivo","doi":"10.1016/j.ejc.2023.103812","DOIUrl":"10.1016/j.ejc.2023.103812","url":null,"abstract":"<div><p>We study the coded shifts introduced by Blanchard and Hansel (1986). We give several constructions which allow one to represent a coded shift as an unambiguous one.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103812"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135894828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theorems and conjectures on some rational generating functions 关于一些有理生成函数的定理和猜想
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103814
Richard P. Stanley
{"title":"Theorems and conjectures on some rational generating functions","authors":"Richard P. Stanley","doi":"10.1016/j.ejc.2023.103814","DOIUrl":"10.1016/j.ejc.2023.103814","url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> denote the <span><math><mi>i</mi></math></span>th Fibonacci number, and define <span><math><mrow><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mfenced><mrow><mn>1</mn><mo>+</mo></mrow></mfenced><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></msup></mrow></mfenced><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span>. The paper is concerned primarily with the coefficients <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span>. In particular, for any <span><math><mrow><mi>r</mi><mo>≥</mo><mn>0</mn></mrow></math></span> the generating function <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> is rational. The coefficients <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> can be displayed in an array called the <span><em>Fibonacci triangle </em><em>poset</em></span> <span><math><mi>F</mi></math></span><span> with some interesting further properties, including an encoding of a certain dense linear order on the nonnegative integers. Some generalizations are briefly considered, but there remain many open questions.</span></p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103814"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135685696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guarding isometric subgraphs and cops and robber in planar graphs 平面图中的等距子图守护和警察与强盗
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103809
Sebastián González Hermosillo de la Maza, Bojan Mohar
{"title":"Guarding isometric subgraphs and cops and robber in planar graphs","authors":"Sebastián González Hermosillo de la Maza,&nbsp;Bojan Mohar","doi":"10.1016/j.ejc.2023.103809","DOIUrl":"10.1016/j.ejc.2023.103809","url":null,"abstract":"<div><p>In the game of Cops and Robbers, one of the most useful results is that an isometric path in a graph can be guarded by one cop. In this paper, we introduce the concept of wide shadow in a subgraph, and use it to characterize all 1-guardable graphs. As an application, we show that 3 cops can capture a robber in any planar graph with the added restriction that at most two cops can move simultaneously, proving a conjecture of Yang and strengthening a classical result of Aigner and Fromme.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103809"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135349188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kempe changes in degenerate graphs 简并图中的Kempe变化
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103802
Marthe Bonamy, Vincent Delecroix, Clément Legrand–Duchesne
{"title":"Kempe changes in degenerate graphs","authors":"Marthe Bonamy,&nbsp;Vincent Delecroix,&nbsp;Clément Legrand–Duchesne","doi":"10.1016/j.ejc.2023.103802","DOIUrl":"10.1016/j.ejc.2023.103802","url":null,"abstract":"<div><p>We consider Kempe changes on the <span><math><mi>k</mi></math></span>-colorings of a graph on <span><math><mi>n</mi></math></span> vertices. If the graph is <span><math><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-degenerate, then all its <span><math><mi>k</mi></math></span>-colorings are equivalent up to Kempe changes. However, the sequence between two <span><math><mi>k</mi></math></span>-colorings that arises from the proof may have length exponential in the number of vertices. An intriguing open question is whether it can be turned polynomial. We prove this to be possible under the stronger assumption that the graph has treewidth at most <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Namely, any two <span><math><mi>k</mi></math></span>-colorings are equivalent up to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>k</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> Kempe changes. We investigate other restrictions (list coloring, bounded maximum average degree, degree bounds). As one of the main results, we derive that given an <span><math><mi>n</mi></math></span><span>-vertex graph with maximum degree </span><span><math><mi>Δ</mi></math></span>, the <span><math><mi>Δ</mi></math></span>-colorings are all equivalent up to <span><math><mrow><msub><mrow><mi>O</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> Kempe changes, unless <span><math><mrow><mi>Δ</mi><mo>=</mo><mn>3</mn></mrow></math></span> and some connected component is a 3-prism, that is <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>□</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>, in which case there exist some non-equivalent 3-colorings.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103802"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation 三邻域引导渗滤下网格和环形中的最小致死集
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103801
Fabricio Benevides , Jean-Claude Bermond , Hicham Lesfari , Nicolas Nisse
{"title":"Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation","authors":"Fabricio Benevides ,&nbsp;Jean-Claude Bermond ,&nbsp;Hicham Lesfari ,&nbsp;Nicolas Nisse","doi":"10.1016/j.ejc.2023.103801","DOIUrl":"10.1016/j.ejc.2023.103801","url":null,"abstract":"<div><p>Let <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span> be any non negative integer and let </span><span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be any undirected graph in which a subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of vertices are initially <em>infected</em>. We consider the process in which, at every step, each non-infected vertex with at least <span><math><mi>r</mi></math></span> infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of an initially infected vertices set <span><math><mi>D</mi></math></span> that eventually infects the whole graph <span><math><mi>G</mi></math></span>. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span><span> for any connected graph </span><span><math><mi>G</mi></math></span>. The case when <span><math><mi>G</mi></math></span> is the <span><math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math></span> grid, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span> is well known and appears in many puzzle books, in particular due to the elegant proof that shows that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. We study the cases of square grids, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and tori, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span>. We show that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> for every <span><math><mi>n</mi></math></span> even and that <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><ms","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103801"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135894821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信