{"title":"The semi-random tree process","authors":"Sofiya Burova , Lyuben Lichev","doi":"10.1016/j.ejc.2025.104120","DOIUrl":"10.1016/j.ejc.2025.104120","url":null,"abstract":"<div><div>The online semi-random graph process is a one-player game which starts with the empty graph on <span><math><mi>n</mi></math></span> vertices. At every round, a player (called Builder) is presented with a vertex <span><math><mi>v</mi></math></span> chosen uniformly at random and independently from previous rounds, and constructs an edge of their choice that is incident to <span><math><mi>v</mi></math></span>. Inspired by recent advances on the semi-random graph process, we define a family of generalized online semi-random models.</div><div>We analyse a particular instance that shares similar features with the original semi-random graph process and determine the hitting times of the classical graph properties minimum degree <span><math><mi>k</mi></math></span>, <span><math><mi>k</mi></math></span>-connectivity, containment of a perfect matching, a Hamiltonian cycle and an <span><math><mi>H</mi></math></span>-factor for a fixed graph <span><math><mi>H</mi></math></span> possessing an additional tree-like property. Along the way, we derive a few consequences of the famous Aldous-Broder algorithm that may be of independent interest.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104120"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alan Frieze , Pu Gao , Calum MacRury , Paweł Prałat , Gregory B. Sorkin
{"title":"Building Hamiltonian cycles in the semi-random graph process in less than 2n rounds","authors":"Alan Frieze , Pu Gao , Calum MacRury , Paweł Prałat , Gregory B. Sorkin","doi":"10.1016/j.ejc.2025.104122","DOIUrl":"10.1016/j.ejc.2025.104122","url":null,"abstract":"<div><div>The semi-random graph process is an adaptive random graph process in which an online algorithm is initially presented an empty graph on <span><math><mi>n</mi></math></span> vertices. In each round, a vertex <span><math><mi>u</mi></math></span> is presented to the algorithm independently and uniformly at random. The algorithm then adaptively selects a vertex <span><math><mi>v</mi></math></span>, and adds the edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> to the graph. For a given graph property, the objective of the algorithm is to force the graph to satisfy this property asymptotically almost surely in as few rounds as possible.</div><div>We focus on the property of Hamiltonicity. We present an adaptive strategy which creates a Hamiltonian cycle in <span><math><mrow><mi>α</mi><mi>n</mi></mrow></math></span> rounds, where <span><math><mrow><mi>α</mi><mo><</mo><mn>1</mn><mo>.</mo><mn>81696</mn></mrow></math></span> is derived from the solution to a system of differential equations. We also show that achieving Hamiltonicity requires at least <span><math><mrow><mi>β</mi><mi>n</mi></mrow></math></span> rounds, where <span><math><mrow><mi>β</mi><mo>></mo><mn>1</mn><mo>.</mo><mn>26575</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104122"},"PeriodicalIF":1.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Building graphs with high minimum degree on a budget","authors":"Kyriakos Katsamaktsis , Shoham Letzter","doi":"10.1016/j.ejc.2025.104119","DOIUrl":"10.1016/j.ejc.2025.104119","url":null,"abstract":"<div><div>We consider the problem of constructing a graph of minimum degree <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></math></span> in the following controlled random graph process, introduced recently by Frieze, Krivelevich and Michaeli. Suppose the edges of the complete graph on <span><math><mi>n</mi></math></span> vertices are permuted uniformly at random. A player, Builder, sees the edges one by one, and must decide irrevocably upon seeing each edge whether to add it to her graph (of already selected edges) or not. Suppose Builder decides to add an edge to her graph if and only if at least one endpoint has degree less than <span><math><mi>k</mi></math></span> in her graph. Frieze, Krivelevich and Michaeli observed that this strategy succeeds in building a graph of minimum degree at least <span><math><mi>k</mi></math></span> by <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, the hitting time for having minimum degree <span><math><mi>k</mi></math></span>. They conjectured that any strategy using <span><math><mrow><mi>ɛ</mi><mi>n</mi></mrow></math></span> fewer edges, where <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> is any constant, fails with high probability. In this paper we disprove their conjecture. We show that for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> Builder has a strategy which purchases <span><math><mrow><mi>n</mi><mo>/</mo><mn>9</mn></mrow></math></span> fewer edges and succeeds with high probability in building a graph of minimum degree at least <span><math><mi>k</mi></math></span> by <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. For <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span> we show that any strategy using <span><math><mrow><mi>ɛ</mi><mi>n</mi></mrow></math></span> fewer edges fails with probability bounded away from 0, and exhibit such a strategy that succeeds with probability bounded away from 0.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"129 ","pages":"Article 104119"},"PeriodicalIF":1.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jack H. Koolen , Kefan Yu , Xiaoye Liang , Harrison Choi , Greg Markowsky
{"title":"Non-geometric distance-regular graphs of diameter at least 3 with smallest eigenvalue at least −3","authors":"Jack H. Koolen , Kefan Yu , Xiaoye Liang , Harrison Choi , Greg Markowsky","doi":"10.1016/j.ejc.2024.104118","DOIUrl":"10.1016/j.ejc.2024.104118","url":null,"abstract":"<div><div>In this paper, we classify non-geometric distance-regular graphs of diameter at least 3 with smallest eigenvalue at least −3. This is progress towards what is hoped to be an eventual complete classification of distance-regular graphs with smallest eigenvalue at least −3, analogous to existing classification results available in the case that the smallest eigenvalue is at least −2.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104118"},"PeriodicalIF":1.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visible lattice points in Pólya’s walks","authors":"Meijie Lu , Xianchang Meng","doi":"10.1016/j.ejc.2024.104116","DOIUrl":"10.1016/j.ejc.2024.104116","url":null,"abstract":"<div><div>In this paper, for any integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, we study the distribution of the visible lattice points in certain generalized Pólya walks on <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>: perturbed Pólya walk and twisted Pólya walk. For the first case, we prove that the asymptotic proportion of visible points in a perturbed Pólya walk is almost surely <span><math><mrow><mn>1</mn><mo>/</mo><mi>ζ</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>ζ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></math></span> denotes the Riemann zeta function. A trivial case of our result covers the standard Pólya walk. Moreover, we do numerical experiments for the second case, we conjecture that the proportion is also almost surely <span><math><mrow><mn>1</mn><mo>/</mo><mi>ζ</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104116"},"PeriodicalIF":1.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On naturally labelled posets and permutations avoiding 12–34","authors":"David Bevan , Gi-Sang Cheon , Sergey Kitaev","doi":"10.1016/j.ejc.2024.104117","DOIUrl":"10.1016/j.ejc.2024.104117","url":null,"abstract":"<div><div>A partial order <span><math><mo>≺</mo></math></span> on [<em>n</em>] is naturally labelled (NL) if x <span><math><mo>≺</mo></math></span> y implies <span><math><mrow><mi>x</mi><mo><</mo><mi>y</mi></mrow></math></span>. We establish a bijection between {<strong>3</strong>, <strong>2</strong>+<strong>2</strong>}-free NL posets and 12–34-avoiding permutations, determine functional equations satisfied by their generating function, and use series analysis to investigate their asymptotic growth, presenting evidence of stretched exponential behaviour. We also exhibit bijections between <strong>3</strong>-free NL posets and various other objects, and determine their generating function. The connection between our results and a hierarchy of combinatorial objects related to interval orders is described.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104117"},"PeriodicalIF":1.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the maximum number of common neighbours in dense random regular graphs","authors":"Mikhail Isaev , Maksim Zhukovskii","doi":"10.1016/j.ejc.2024.104106","DOIUrl":"10.1016/j.ejc.2024.104106","url":null,"abstract":"<div><div>We derive the distribution of the maximum number of common neighbours of a pair of vertices in a dense random regular graph. The proof involves two important steps. One step is to establish the extremal independence property: the asymptotic equivalence with the maximum component of a vector with independent marginal distributions. The other step is to prove that the distribution of the number of common neighbours for each pair of vertices can be approximated by the binomial distribution.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104106"},"PeriodicalIF":1.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alvaro Carbonero , Hidde Koerts , Benjamin Moore , Sophie Spirkl
{"title":"On heroes in digraphs with forbidden induced forests","authors":"Alvaro Carbonero , Hidde Koerts , Benjamin Moore , Sophie Spirkl","doi":"10.1016/j.ejc.2024.104104","DOIUrl":"10.1016/j.ejc.2024.104104","url":null,"abstract":"<div><div>We continue a line of research which studies which hereditary families of digraphs have bounded dichromatic number. For a class of digraphs <span><math><mi>C</mi></math></span>, a hero in <span><math><mi>C</mi></math></span> is any digraph <span><math><mi>H</mi></math></span> such that <span><math><mi>H</mi></math></span>-free digraphs in <span><math><mi>C</mi></math></span> have bounded dichromatic number. We show that if <span><math><mi>F</mi></math></span> is an oriented star of degree at least five, the only heroes for the class of <span><math><mi>F</mi></math></span>-free digraphs are transitive tournaments. For oriented stars <span><math><mi>F</mi></math></span> of degree exactly four, we show the only heroes in <span><math><mi>F</mi></math></span>-free digraphs are transitive tournaments, or possibly special joins of transitive tournaments. Aboulker et al. characterized the set of heroes of <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>→</mo></mover><mo>}</mo></mrow></math></span>-free digraphs almost completely, and we show the same characterization for the class of <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>→</mo></mover><mo>}</mo></mrow></math></span>-free digraphs. Lastly, we show that if we forbid two “valid” orientations of brooms, then every transitive tournament is a hero for this class of digraphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104104"},"PeriodicalIF":1.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A group action on cyclic compositions and γ-positivity","authors":"Shishuo Fu , Jie Yang","doi":"10.1016/j.ejc.2024.104107","DOIUrl":"10.1016/j.ejc.2024.104107","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> be the number of Dyck paths of semilength <span><math><mi>n</mi></math></span> with <span><math><mi>k</mi></math></span> occurrences of <span><math><mrow><mi>U</mi><mi>D</mi></mrow></math></span> and <span><math><mi>m</mi></math></span> occurrences of <span><math><mrow><mi>U</mi><mi>U</mi><mi>D</mi></mrow></math></span>. We establish in two ways a new interpretation of the numbers <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> in terms of plane trees and internal nodes. The first way builds on a new characterization of plane trees that involves cyclic compositions. The second proof utilizes a known interpretation of <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> in terms of plane trees and leaves, and a recent involution on plane trees constructed by Li, Lin, and Zhao. Moreover, a group action on the set of cyclic compositions (or equivalently, 2-dominant compositions) is introduced, which amounts to give a combinatorial proof of the <span><math><mi>γ</mi></math></span>-positivity of the Narayana polynomial, as well as the <span><math><mi>γ</mi></math></span>-positivity of the polynomial <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>∑</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>k</mi></mrow></msub><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi></mrow></msub><msup><mrow><mi>t</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></math></span> previously obtained by Bóna et al, with apparently new combinatorial interpretations of their <span><math><mi>γ</mi></math></span>-coefficients.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104107"},"PeriodicalIF":1.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coloring minimal Cayley graphs","authors":"Ignacio García-Marco , Kolja Knauer","doi":"10.1016/j.ejc.2024.104108","DOIUrl":"10.1016/j.ejc.2024.104108","url":null,"abstract":"<div><div>In 1978 Babai raised the question whether all minimal Cayley graphs have bounded chromatic number; in 1994 he conjectured a negative answer. In this paper we show that any minimal Cayley graph of a (finitely generated) generalized dihedral or nilpotent group has chromatic number at most 3, while 4 colors are sometimes necessary for soluble groups. On the other hand we address a related question proposed by Babai in 1978 by constructing graphs of unbounded chromatic number that admit a proper edge coloring such that each cycle has some color at least twice. The latter can be viewed as a step towards confirming Babai’s 1994 conjecture – a problem that remains open.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104108"},"PeriodicalIF":1.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}