European Journal of Combinatorics最新文献

筛选
英文 中文
A co-preLie structure from chronological loop erasure in graph walks 从图行走中的时序循环擦除看共同预列结构
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-04-12 DOI: 10.1016/j.ejc.2024.103967
Loïc Foissy , Pierre-Louis Giscard , Cécile Mammez
{"title":"A co-preLie structure from chronological loop erasure in graph walks","authors":"Loïc Foissy ,&nbsp;Pierre-Louis Giscard ,&nbsp;Cécile Mammez","doi":"10.1016/j.ejc.2024.103967","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103967","url":null,"abstract":"<div><p>We show that the chronological removal of cycles from a walk on a graph, known as Lawler’s loop-erasing procedure, generates a preLie co-algebra on the vector space spanned by the walks. In addition, we prove that the tensor and symmetric algebras of graph walks are Hopf algebras, provide their antipodes explicitly and recover the preLie co-algebra from a brace coalgebra on the tensor algebra of graph walks. Finally we exhibit sub-Hopf algebras associated to particular types of walks.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000520/pdfft?md5=2816f59bd5b837c134bedca21dd85a3f&pid=1-s2.0-S0195669824000520-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140549963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On sum-intersecting families of positive integers 关于正整数的相交和族
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-04-10 DOI: 10.1016/j.ejc.2024.103963
Aaron Berger, Nitya Mani
{"title":"On sum-intersecting families of positive integers","authors":"Aaron Berger,&nbsp;Nitya Mani","doi":"10.1016/j.ejc.2024.103963","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103963","url":null,"abstract":"<div><p>We study the following natural arithmetic question regarding intersecting families: how large can a family of subsets of integers from <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mi>n</mi><mo>}</mo></mrow></math></span> be such that, for every pair of subsets in the family, the intersection contains a <em>sum</em> <span><math><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mi>z</mi></mrow></math></span>? We conjecture that any such <em>sum-intersecting</em> family must have size at most <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> (which would be tight if correct). Towards this conjecture, we show that every sum-intersecting family has at most <span><math><mrow><mn>0</mn><mo>.</mo><mn>32</mn><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> subsets.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on non-empty cross-intersecting families 关于非空交叉相交族的说明
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-04-08 DOI: 10.1016/j.ejc.2024.103968
Menglong Zhang, Tao Feng
{"title":"A note on non-empty cross-intersecting families","authors":"Menglong Zhang,&nbsp;Tao Feng","doi":"10.1016/j.ejc.2024.103968","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103968","url":null,"abstract":"<div><p>The families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span> are said to be cross-intersecting if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></mrow><mo>⩾</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>&lt;</mo><mi>j</mi><mo>⩽</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span>. Cross-intersecting families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> are said to be <em>non-empty</em> if <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><mo>0̸</mo></mrow></math></span> for any <span><math><mrow><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi></mrow></math></span>. This paper shows that if <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span> are non-empty cross-intersecting families with <span><math><mrow><ms","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nearly extremal non-trivial cross t-intersecting families and r-wise t-intersecting families 近极值非三叉t交族和r-智t交族
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-04-04 DOI: 10.1016/j.ejc.2024.103958
Mengyu Cao , Mei Lu , Benjian Lv , Kaishun Wang
{"title":"Nearly extremal non-trivial cross t-intersecting families and r-wise t-intersecting families","authors":"Mengyu Cao ,&nbsp;Mei Lu ,&nbsp;Benjian Lv ,&nbsp;Kaishun Wang","doi":"10.1016/j.ejc.2024.103958","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103958","url":null,"abstract":"<div><p>Let <span><math><mi>n</mi></math></span>, <span><math><mi>r</mi></math></span>, <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and <span><math><mi>t</mi></math></span> be positive integers with <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> a family of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-subsets of an <span><math><mi>n</mi></math></span>-set <span><math><mi>V</mi></math></span>. The families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> are said to be <span><math><mi>r</mi></math></span>-cross <span><math><mi>t</mi></math></span>-intersecting if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∩</mo><mo>⋯</mo><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>|</mo></mrow><mo>≥</mo><mi>t</mi></mrow></math></span> for all <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> and said to be non-trivial if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mo>∩</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></msub><msub><mrow><mo>∩</mo></mrow><mrow><mi>F</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mi>F</mi><mo>|</mo></mrow><mo>&lt;</mo><mi>t</mi></mrow></math></span>. If the <span><math><mi>r</mi></math></span>-cross <span><math><mi>t</mi></math></span>-intersecting families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> satisfy <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mi>F</mi></mrow></math></span>, then <span><math><mi>F</mi></math></span> is well known as <span><math><mi>r</mi></math></span>-wise <span><math><mi>t</mi></math></span>-intersecting. In this paper, we first describe the structure of maximal 2-cross <span><math><mi>t</mi></math></span>-intersecting families with given <span><math><mi>t</mi></math></s","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The binomial-Stirling–Eulerian polynomials 二项式-斯特林-欧拉多项式
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-04-03 DOI: 10.1016/j.ejc.2024.103962
Kathy Q. Ji , Zhicong Lin
{"title":"The binomial-Stirling–Eulerian polynomials","authors":"Kathy Q. Ji ,&nbsp;Zhicong Lin","doi":"10.1016/j.ejc.2024.103962","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103962","url":null,"abstract":"<div><p>We introduce the binomial-Stirling–Eulerian polynomials, denoted <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>|</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span>, which encompass binomial coefficients, Eulerian numbers and two Stirling statistics: the left-to-right minima and the right-to-left minima. When <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span>, these polynomials reduce to the binomial-Eulerian polynomials <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, originally named by Shareshian and Wachs and explored by Chung–Graham–Knuth and Postnikov–Reiner–Williams. We investigate the <span><math><mi>γ</mi></math></span>-positivity of <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>|</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> from two aspects: <span><math><mo>•</mo></math></span> firstly by employing the grammatical calculus introduced by Chen; <span><math><mo>•</mo></math></span> and secondly by constructing a new group action on permutations. These results extend the symmetric Eulerian identity found by Chung, Graham and Knuth, and the <span><math><mi>γ</mi></math></span>-positivity of <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> first demonstrated by Postnikov, Reiner and Williams.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on interval colourings of graphs 关于图形区间着色的说明
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-04-03 DOI: 10.1016/j.ejc.2024.103956
Maria Axenovich , António Girão , Lawrence Hollom , Julien Portier , Emil Powierski , Michael Savery , Youri Tamitegama , Leo Versteegen
{"title":"A note on interval colourings of graphs","authors":"Maria Axenovich ,&nbsp;António Girão ,&nbsp;Lawrence Hollom ,&nbsp;Julien Portier ,&nbsp;Emil Powierski ,&nbsp;Michael Savery ,&nbsp;Youri Tamitegama ,&nbsp;Leo Versteegen","doi":"10.1016/j.ejc.2024.103956","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103956","url":null,"abstract":"<div><p>A graph is said to be <em>interval colourable</em> if it admits a proper edge-colouring using palette <span><math><mi>N</mi></math></span> in which the set of colours of edges that are incident to each vertex is an interval. The <em>interval colouring thickness</em> of a graph <span><math><mi>G</mi></math></span> is the minimum <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> can be edge-decomposed into <span><math><mi>k</mi></math></span> interval colourable graphs. We show that <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the maximum interval colouring thickness of an <span><math><mi>n</mi></math></span>-vertex graph, satisfies <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>/</mo><mo>log</mo><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>⩽</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>6</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>, which improves on the trivial lower bound and the upper bound given by the first author and Zheng. As a corollary, we answer a question of Asratian, Casselgren, and Petrosyan and disprove a conjecture of Borowiecka-Olszewska, Drgas-Burchardt, Javier-Nol, and Zuazua. We also confirm a conjecture of the first author that any interval colouring of an <span><math><mi>n</mi></math></span>-vertex planar graph uses at most <span><math><mrow><mn>3</mn><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>2</mn></mrow></math></span> colours.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000416/pdfft?md5=f4b4a879ad13e34948a7eab92d5e024c&pid=1-s2.0-S0195669824000416-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hecke-type series involving infinite products 涉及无穷积的赫克型数列
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-04-02 DOI: 10.1016/j.ejc.2024.103959
Bing He
{"title":"Hecke-type series involving infinite products","authors":"Bing He","doi":"10.1016/j.ejc.2024.103959","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103959","url":null,"abstract":"<div><p>In this paper, we study Hecke-type series involving infinite products. In particular, we establish some Hecke-type series involving infinite products and then obtain truncated versions of these series as well as truncated forms of some other known series of such types. Finally, as an application, we deduce six infinite families of inequalities for various partition functions. Our proofs of the main results heavily rely on a formula from the work of Liu (2013).</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140339761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounding clique size in squares of planar graphs 平面图正方形中的边界簇大小
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-04-01 DOI: 10.1016/j.ejc.2024.103960
Daniel W. Cranston
{"title":"Bounding clique size in squares of planar graphs","authors":"Daniel W. Cranston","doi":"10.1016/j.ejc.2024.103960","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103960","url":null,"abstract":"<div><p>Wegner conjectured that if <span><math><mi>G</mi></math></span> is a planar graph with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>8</mn></mrow></math></span>, then <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>. This problem has received much attention, but remains open for all <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>8</mn></mrow></math></span>. Here we prove an analogous bound on <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>: If <span><math><mi>G</mi></math></span> is a plane graph with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>36</mn></mrow></math></span>, then <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>. In fact, this is a corollary of the following lemma, which is our main result. If <span><math><mi>G</mi></math></span> is a plane graph with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>19</mn></mrow></math></span> and <span><math><mi>S</mi></math></span> is a maximal clique in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>≥</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>20</mn></mrow></math></span>, then there exist <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><mi>w</mi><mo>:</mo><mrow><mo>|</mo><mi>N</mi><mrow><mo>[</mo><mi>w</mi><mo>]</mo></mrow><mo>∩</mo><mrow><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>}</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounding the distant irregularity strength of graphs via a non-uniformly biased random weight assignment 通过非均匀偏置随机权重分配限定图的远距离不规则性强度
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-03-26 DOI: 10.1016/j.ejc.2024.103961
Jakub Przybyło
{"title":"Bounding the distant irregularity strength of graphs via a non-uniformly biased random weight assignment","authors":"Jakub Przybyło","doi":"10.1016/j.ejc.2024.103961","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103961","url":null,"abstract":"<div><p>Given an edge <span><math><mi>k</mi></math></span>-weighting <span><math><mrow><mi>ω</mi><mo>:</mo><mi>E</mi><mo>→</mo><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></mrow></math></span> of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, the weighted degree of a vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></math></span> is the sum of its incident weights. The least <span><math><mi>k</mi></math></span> for which there exists an edge <span><math><mi>k</mi></math></span>-weighting such that the resulting weighted degrees of the vertices at distance at most <span><math><mi>r</mi></math></span> in <span><math><mi>G</mi></math></span> are distinct is called the <span><math><mi>r</mi></math></span>-distant irregularity strength, and denoted <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. This concept links the well-known 1–2–3 Conjecture, corresponding to <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, with the irregularity strength of graphs, <span><math><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which coincides with <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for every <span><math><mi>r</mi></math></span> at least the diameter of <span><math><mi>G</mi></math></span>. It is believed that for every <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, where <span><math><mi>Δ</mi></math></span> is the maximum degree of <span><math><mi>G</mi></math></span>, while it is known that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>6</mn><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> in general and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mn>4</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for graphs with minimum degree <span><math><mi>δ</mi></math></span> at least <span><math><mrow><msup><mrow><mo>log</mo></mrow><mrow><mn>8</mn></mrow></msup><mi>Δ</mi></mrow></math></span>. We apply the probabilistic method i","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140296879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact results on generalized Erdős-Gallai problems 广义厄尔多斯-加莱问题的精确结果
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-03-25 DOI: 10.1016/j.ejc.2024.103955
Debsoumya Chakraborti , Da Qi Chen
{"title":"Exact results on generalized Erdős-Gallai problems","authors":"Debsoumya Chakraborti ,&nbsp;Da Qi Chen","doi":"10.1016/j.ejc.2024.103955","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103955","url":null,"abstract":"<div><p>Generalized Turán problems have been a central topic of study in extremal combinatorics throughout the last few decades. One such problem is maximizing the number of cliques of size <span><math><mi>t</mi></math></span> in a graph of a fixed order that does not contain any path (or cycle) of length at least a given number. Both of the path-free and cycle-free extremal problems were recently considered and asymptotically solved by Luo. We fully resolve these problems by characterizing all possible extremal graphs. We further extend these results by solving the edge-variant of these problems where the number of edges is fixed instead of the number of vertices. We similarly obtain exact characterization of the extremal graphs for these edge variants.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000404/pdfft?md5=bd17e91f57524428831c3b9e24030540&pid=1-s2.0-S0195669824000404-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140290763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信