随机扭曲超立方体的直径

IF 1 3区 数学 Q1 MATHEMATICS
Lucas Aragão , Maurício Collares , Gabriel Dahia , João Pedro Marciano
{"title":"随机扭曲超立方体的直径","authors":"Lucas Aragão ,&nbsp;Maurício Collares ,&nbsp;Gabriel Dahia ,&nbsp;João Pedro Marciano","doi":"10.1016/j.ejc.2024.104078","DOIUrl":null,"url":null,"abstract":"<div><div>The <span><math><mi>n</mi></math></span>-dimensional random twisted hypercube <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is constructed recursively by taking two instances of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, with any joint distribution, and adding a random perfect matching between their vertex sets. Benjamini, Dikstein, Gross, and Zhukovskii showed that its diameter is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mo>log</mo><mo>log</mo><mi>n</mi><mo>/</mo><mo>log</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with high probability and at least <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow></math></span>. We improve their upper bound by showing that <span><math><mrow><mi>diam</mi><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mfrac><mrow><mi>n</mi></mrow><mrow><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow></mfrac></mrow></math></span> with high probability.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The diameter of randomly twisted hypercubes\",\"authors\":\"Lucas Aragão ,&nbsp;Maurício Collares ,&nbsp;Gabriel Dahia ,&nbsp;João Pedro Marciano\",\"doi\":\"10.1016/j.ejc.2024.104078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <span><math><mi>n</mi></math></span>-dimensional random twisted hypercube <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is constructed recursively by taking two instances of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, with any joint distribution, and adding a random perfect matching between their vertex sets. Benjamini, Dikstein, Gross, and Zhukovskii showed that its diameter is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mo>log</mo><mo>log</mo><mi>n</mi><mo>/</mo><mo>log</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with high probability and at least <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow></math></span>. We improve their upper bound by showing that <span><math><mrow><mi>diam</mi><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mfrac><mrow><mi>n</mi></mrow><mrow><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow></mfrac></mrow></math></span> with high probability.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982400163X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982400163X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

n 维随机扭曲超立方体 Gn 是由两个具有任意联合分布的 Gn-1 实例,并在它们的顶点集之间添加一个随机完美匹配来递归构造的。Benjamini、Dikstein、Gross 和 Zhukovskii 证明了其直径为 O(nloglogn/loglogn),且概率很高,至少为 (n-1)/log2n。我们通过证明 diam(Gn)=(1+o(1))nlog2n 的高概率,改进了他们的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diameter of randomly twisted hypercubes
The n-dimensional random twisted hypercube Gn is constructed recursively by taking two instances of Gn1, with any joint distribution, and adding a random perfect matching between their vertex sets. Benjamini, Dikstein, Gross, and Zhukovskii showed that its diameter is O(nlogloglogn/loglogn) with high probability and at least (n1)/log2n. We improve their upper bound by showing that diam(Gn)=(1+o(1))nlog2n with high probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信