Jacob Fox , Tung Nguyen , Alex Scott , Paul Seymour
{"title":"Induced subgraph density. II. Sparse and dense sets in cographs","authors":"Jacob Fox , Tung Nguyen , Alex Scott , Paul Seymour","doi":"10.1016/j.ejc.2024.104075","DOIUrl":null,"url":null,"abstract":"<div><div>A well-known theorem of Rödl says that for every graph <span><math><mi>H</mi></math></span>, and every <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span>, there exists <span><math><mrow><mi>δ</mi><mo>></mo><mn>0</mn></mrow></math></span> such that if <span><math><mi>G</mi></math></span> does not contain an induced copy of <span><math><mi>H</mi></math></span>, then there exists <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≥</mo><mi>δ</mi><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has edge-density at most <span><math><mi>ɛ</mi></math></span>. But how does <span><math><mi>δ</mi></math></span> depend on <span><math><mi>ϵ</mi></math></span>? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all <span><math><mi>H</mi></math></span> there exists <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span> such that for all <span><math><mi>ɛ</mi></math></span> with <span><math><mrow><mn>0</mn><mo><</mo><mi>ɛ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, Rödl’s theorem holds with <span><math><mrow><mi>δ</mi><mo>=</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup></mrow></math></span>. This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs <span><math><mi>H</mi></math></span>. Our first result shows that it is true when <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>. Indeed, in that case we can take <span><math><mrow><mi>δ</mi><mo>=</mo><mi>ɛ</mi></mrow></math></span>, and insist that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has maximum degree at most <span><math><mrow><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span>).</div><div>Second, we will show that every graph <span><math><mi>H</mi></math></span> that can be obtained by substitution from copies of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say <span><math><mi>H</mi></math></span> is <em>viral</em> if there exists <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span> such that for all <span><math><mi>ɛ</mi></math></span> with <span><math><mrow><mn>0</mn><mo><</mo><mi>ɛ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, if <span><math><mi>G</mi></math></span> contains at most <span><math><mrow><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></msup></mrow></math></span> copies of <span><math><mi>H</mi></math></span> as induced subgraphs, then there exists <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≥</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has edge-density at most <span><math><mi>ɛ</mi></math></span>. We will show that <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is viral, using a “polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-removal lemma” of Alon and Fox. We will also show that the class of viral graphs is closed under vertex-substitution.</div><div>Finally, we give a different strengthening of Rödl’s theorem: we show that if <span><math><mi>G</mi></math></span> does not contain an induced copy of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, then its vertices can be partitioned into at most <span><math><mrow><mn>480</mn><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> subsets <span><math><mi>X</mi></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has maximum degree at most <span><math><mrow><mi>ɛ</mi><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104075"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001604","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A well-known theorem of Rödl says that for every graph , and every , there exists such that if does not contain an induced copy of , then there exists with such that one of has edge-density at most . But how does depend on ? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all there exists such that for all with , Rödl’s theorem holds with . This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs . Our first result shows that it is true when . Indeed, in that case we can take , and insist that one of has maximum degree at most ).
Second, we will show that every graph that can be obtained by substitution from copies of satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say is viral if there exists such that for all with , if contains at most copies of as induced subgraphs, then there exists with such that one of has edge-density at most . We will show that is viral, using a “polynomial -removal lemma” of Alon and Fox. We will also show that the class of viral graphs is closed under vertex-substitution.
Finally, we give a different strengthening of Rödl’s theorem: we show that if does not contain an induced copy of , then its vertices can be partitioned into at most subsets such that one of has maximum degree at most .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.