Induced subgraph density. II. Sparse and dense sets in cographs

IF 1 3区 数学 Q1 MATHEMATICS
Jacob Fox , Tung Nguyen , Alex Scott , Paul Seymour
{"title":"Induced subgraph density. II. Sparse and dense sets in cographs","authors":"Jacob Fox ,&nbsp;Tung Nguyen ,&nbsp;Alex Scott ,&nbsp;Paul Seymour","doi":"10.1016/j.ejc.2024.104075","DOIUrl":null,"url":null,"abstract":"<div><div>A well-known theorem of Rödl says that for every graph <span><math><mi>H</mi></math></span>, and every <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, there exists <span><math><mrow><mi>δ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that if <span><math><mi>G</mi></math></span> does not contain an induced copy of <span><math><mi>H</mi></math></span>, then there exists <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≥</mo><mi>δ</mi><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has edge-density at most <span><math><mi>ɛ</mi></math></span>. But how does <span><math><mi>δ</mi></math></span> depend on <span><math><mi>ϵ</mi></math></span>? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all <span><math><mi>H</mi></math></span> there exists <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that for all <span><math><mi>ɛ</mi></math></span> with <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ɛ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, Rödl’s theorem holds with <span><math><mrow><mi>δ</mi><mo>=</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup></mrow></math></span>. This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs <span><math><mi>H</mi></math></span>. Our first result shows that it is true when <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>. Indeed, in that case we can take <span><math><mrow><mi>δ</mi><mo>=</mo><mi>ɛ</mi></mrow></math></span>, and insist that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has maximum degree at most <span><math><mrow><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span>).</div><div>Second, we will show that every graph <span><math><mi>H</mi></math></span> that can be obtained by substitution from copies of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say <span><math><mi>H</mi></math></span> is <em>viral</em> if there exists <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that for all <span><math><mi>ɛ</mi></math></span> with <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ɛ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, if <span><math><mi>G</mi></math></span> contains at most <span><math><mrow><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></msup></mrow></math></span> copies of <span><math><mi>H</mi></math></span> as induced subgraphs, then there exists <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≥</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has edge-density at most <span><math><mi>ɛ</mi></math></span>. We will show that <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is viral, using a “polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-removal lemma” of Alon and Fox. We will also show that the class of viral graphs is closed under vertex-substitution.</div><div>Finally, we give a different strengthening of Rödl’s theorem: we show that if <span><math><mi>G</mi></math></span> does not contain an induced copy of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, then its vertices can be partitioned into at most <span><math><mrow><mn>480</mn><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> subsets <span><math><mi>X</mi></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has maximum degree at most <span><math><mrow><mi>ɛ</mi><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104075"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001604","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A well-known theorem of Rödl says that for every graph H, and every ɛ>0, there exists δ>0 such that if G does not contain an induced copy of H, then there exists XV(G) with |X|δ|G| such that one of G[X],G¯[X] has edge-density at most ɛ. But how does δ depend on ϵ? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all H there exists c>0 such that for all ɛ with 0<ɛ1/2, Rödl’s theorem holds with δ=ɛc. This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs H. Our first result shows that it is true when H=P4. Indeed, in that case we can take δ=ɛ, and insist that one of G[X],G¯[X] has maximum degree at most ɛ2|G|).
Second, we will show that every graph H that can be obtained by substitution from copies of P4 satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say H is viral if there exists c>0 such that for all ɛ with 0<ɛ1/2, if G contains at most ɛc|G||H| copies of H as induced subgraphs, then there exists XV(G) with |X|ɛc|G| such that one of G[X],G¯[X] has edge-density at most ɛ. We will show that P4 is viral, using a “polynomial P4-removal lemma” of Alon and Fox. We will also show that the class of viral graphs is closed under vertex-substitution.
Finally, we give a different strengthening of Rödl’s theorem: we show that if G does not contain an induced copy of P4, then its vertices can be partitioned into at most 480ɛ4 subsets X such that one of G[X],G¯[X] has maximum degree at most ɛ|X|.
诱导子图密度II.cographs 中的稀疏集和密集集
罗德尔(Rödl)的一个著名定理指出,对于每个图 H 和每个ɛ>0,都存在 δ>0,这样,如果 G 不包含 H 的诱导副本,则存在 X⊆V(G),其中 |X|≥δ|G| 这样,G[X],G¯[X]中的一个边密度最多为ɛ。但是,δ 如何取决于ϵ?福克斯和苏达科夫猜想,这种依赖性最多是多项式的:对于所有 H,存在 c>0 这样的条件:对于所有 ɛ 且 0<ɛ≤1/2 时,罗德尔定理成立,δ=ɛc。我们的第一个结果表明,当 H=P4 时,这个猜想成立。事实上,在这种情况下,我们可以取 δ=ɛ,并坚持认为 G[X],G¯[X] 中的一个图的最大度最多为ɛ2|G|)。其次,我们将证明每个可以从 P4 的副本中通过替换得到的图 H 都满足福克斯-苏达科夫猜想。为了证明这一点,我们需要使用一个更强的性质。如果存在 c>0 这样的情况,即对于所有 0<ɛ≤1/2 的ɛ,如果 G 最多包含 H 的ɛc|G|||H|副本作为诱导子图,那么存在 X⊆V(G),其中 |X|≥ɛc|G| 这样的情况,即 G[X],G¯[X] 中的一个边密度最多为ɛ。我们将利用 Alon 和 Fox 的 "多项式 P4-removal Lemma "来证明 P4 是病毒式的。最后,我们将给出罗德尔定理的另一个强化:我们将证明,如果 G 不包含 P4 的诱导副本,那么它的顶点最多可以划分为 480ɛ-4 个子集 X,使得 G[X],G¯[X] 中的一个子集的最大度最多为ɛ|X|。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信