Degree conditions for Ramsey goodness of paths

IF 1 3区 数学 Q1 MATHEMATICS
Lucas Aragão , João Pedro Marciano , Walner Mendonça
{"title":"Degree conditions for Ramsey goodness of paths","authors":"Lucas Aragão ,&nbsp;João Pedro Marciano ,&nbsp;Walner Mendonça","doi":"10.1016/j.ejc.2024.104082","DOIUrl":null,"url":null,"abstract":"<div><div>A classical result of Chvátal implies that if <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then any colouring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in red and blue contains either a monochromatic red <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> or a monochromatic blue <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We study a natural generalisation of his result, determining the exact minimum degree condition for a graph <span><math><mi>G</mi></math></span> on <span><math><mrow><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> vertices which guarantees that the same Ramsey property holds in <span><math><mi>G</mi></math></span>. In particular, using a slight generalisation of a result of Haxell, we show that <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mi>t</mi><mo>/</mo><mn>2</mn></mrow></mfenced></mrow></math></span> suffices, and that this bound is best possible. We also use a classical result of Bollobás, Erdős, and Straus to prove a tight minimum degree condition in the case <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104082"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001677","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A classical result of Chvátal implies that if n(r1)(t1)+1, then any colouring of the edges of Kn in red and blue contains either a monochromatic red Kr or a monochromatic blue Pt. We study a natural generalisation of his result, determining the exact minimum degree condition for a graph G on n=(r1)(t1)+1 vertices which guarantees that the same Ramsey property holds in G. In particular, using a slight generalisation of a result of Haxell, we show that δ(G)nt/2 suffices, and that this bound is best possible. We also use a classical result of Bollobás, Erdős, and Straus to prove a tight minimum degree condition in the case r=3 for all n2t1.
拉姆齐良好路径的程度条件
Chvátal 的一个经典结果意味着,如果 n≥(r-1)(t-1)+1,那么 Kn 的任何红蓝边着色都包含一个单色红色 Kr 或一个单色蓝色 Pt。我们研究了他的结果的自然推广,确定了 n=(r-1)(t-1)+1 个顶点上的图 G 的精确最小度条件,该条件保证了相同的拉姆齐性质在 G 中成立。特别是,利用哈克赛尔结果的轻微推广,我们证明δ(G)≥n-t/2 就足够了,而且这个约束是最好的。我们还利用 Bollobás、Erdős 和 Straus 的经典结果,证明了在 r=3 的情况下,所有 n≥2t-1 的最小度条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信