{"title":"整数的有界唯一表示基","authors":"Yong-Gao Chen, Jin-Hui Fang","doi":"10.1016/j.ejc.2024.104080","DOIUrl":null,"url":null,"abstract":"<div><div>For a nonempty set <span><math><mi>A</mi></math></span> of integers and an integer <span><math><mi>n</mi></math></span>, let <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>+</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>≤</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>, and let <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>−</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>. Erdős and Turán (1941) posed the profound conjecture: if <span><math><mi>A</mi></math></span> is a set of positive integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span> for all sufficiently large <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set <span><math><mi>A</mi></math></span> with logarithmic growth such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span>. In this paper, we prove that, for any positive function <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, there is a bounded set <span><math><mi>A</mi></math></span> of integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all positive integers <span><math><mi>n</mi></math></span>, and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>log</mo><mi>x</mi></mrow></math></span> for all sufficiently large <span><math><mi>x</mi></math></span>, where <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is the number of elements <span><math><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></math></span> with <span><math><mrow><mo>−</mo><mi>x</mi><mo>≤</mo><mi>a</mi><mo>≤</mo><mi>x</mi></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded unique representation bases for the integers\",\"authors\":\"Yong-Gao Chen, Jin-Hui Fang\",\"doi\":\"10.1016/j.ejc.2024.104080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a nonempty set <span><math><mi>A</mi></math></span> of integers and an integer <span><math><mi>n</mi></math></span>, let <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>+</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>≤</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>, and let <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>−</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>. Erdős and Turán (1941) posed the profound conjecture: if <span><math><mi>A</mi></math></span> is a set of positive integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span> for all sufficiently large <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set <span><math><mi>A</mi></math></span> with logarithmic growth such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span>. In this paper, we prove that, for any positive function <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, there is a bounded set <span><math><mi>A</mi></math></span> of integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all positive integers <span><math><mi>n</mi></math></span>, and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>log</mo><mi>x</mi></mrow></math></span> for all sufficiently large <span><math><mi>x</mi></math></span>, where <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is the number of elements <span><math><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></math></span> with <span><math><mrow><mo>−</mo><mi>x</mi><mo>≤</mo><mi>a</mi><mo>≤</mo><mi>x</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001653\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001653","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bounded unique representation bases for the integers
For a nonempty set of integers and an integer , let be the number of representations of with and , and let be the number of representations of with . Erdős and Turán (1941) posed the profound conjecture: if is a set of positive integers such that for all sufficiently large , then is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set with logarithmic growth such that for all integers . In this paper, we prove that, for any positive function with as , there is a bounded set of integers such that for all integers and for all positive integers , and for all sufficiently large , where is the number of elements with .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.