European Journal of Combinatorics最新文献

筛选
英文 中文
Repeatedly applying the Combinatorial Nullstellensatz for Zero-sum Grids to Martin Gardner’s minimum no-3-in-a-line problem 将零和网格的组合nullstellensz反复应用于Martin Gardner的最小3-in- line问题
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-12-12 DOI: 10.1016/j.ejc.2024.104095
Seunghwan Oh , John R. Schmitt , Xianzhi Wang
{"title":"Repeatedly applying the Combinatorial Nullstellensatz for Zero-sum Grids to Martin Gardner’s minimum no-3-in-a-line problem","authors":"Seunghwan Oh ,&nbsp;John R. Schmitt ,&nbsp;Xianzhi Wang","doi":"10.1016/j.ejc.2024.104095","DOIUrl":"10.1016/j.ejc.2024.104095","url":null,"abstract":"<div><div>A 1976 question of Martin Gardner asks for the minimum size of a placement of queens on an <span><math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math></span> chessboard that is maximal with respect to the property of ‘no-3-in-a-line’. The work of Cooper, Pikhurko, Schmitt and Warrington showed that this number is at least <span><math><mi>n</mi></math></span> in the cases that <span><math><mrow><mi>n</mi><mo>⁄</mo><mo>≡</mo><mn>3</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>4</mn><mo>)</mo></mrow></mrow></math></span>, and at least <span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span> in the case that <span><math><mrow><mi>n</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>4</mn><mo>)</mo></mrow></mrow></math></span>. When <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> is odd, Gardner conjectured the lower bound to be <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span>. We prove this conjecture in the case that <span><math><mrow><mi>n</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>4</mn><mo>)</mo></mrow></mrow></math></span>. The proof relies heavily on a recent advancement to the Combinatorial Nullstellensatz for zero-sum grids due to Bogdan Nica.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104095"},"PeriodicalIF":1.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stack and queue numbers of graphs revisited 重新访问的图的堆栈和队列号
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-12-07 DOI: 10.1016/j.ejc.2024.104094
Petr Hliněný, Adam Straka
{"title":"Stack and queue numbers of graphs revisited","authors":"Petr Hliněný,&nbsp;Adam Straka","doi":"10.1016/j.ejc.2024.104094","DOIUrl":"10.1016/j.ejc.2024.104094","url":null,"abstract":"<div><div>A long-standing question of the mutual relation between the stack and queue numbers of a graph, explicitly emphasized by Dujmović and Wood in 2005, was partially answered by Dujmović, Eppstein, Hickingbotham, Morin and Wood in 2022; they proved the existence of a graph family with the queue number at most 4 but unbounded stack number. We give an alternative very short, and still elementary, proof of the same fact.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"129 ","pages":"Article 104094"},"PeriodicalIF":1.0,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of countable 2-colored ultrahomogeneous graphs where each color class forms a disjoint union of cliques 可计数2色超齐次图的分类,其中每个色类形成团的不相交并
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-12-06 DOI: 10.1016/j.ejc.2024.104093
Sofia Brenner, Irene Heinrich
{"title":"Classification of countable 2-colored ultrahomogeneous graphs where each color class forms a disjoint union of cliques","authors":"Sofia Brenner,&nbsp;Irene Heinrich","doi":"10.1016/j.ejc.2024.104093","DOIUrl":"10.1016/j.ejc.2024.104093","url":null,"abstract":"<div><div>We classify the countable ultrahomogeneous 2-vertex-colored graphs in which the color classes form disjoint unions of cliques. This generalizes work by Jenkinson et. al. (2012), Lockett and Truss (2014) as well as Rose (2011) on ultrahomogeneous <span><math><mi>n</mi></math></span>-graphs. As the key aspect in such a classification, we identify a concept called piecewise ultrahomogeneity. We prove that there are two specific graphs whose occurrence essentially dictates whether a graph is piecewise ultrahomogeneous, and we exploit this fact to prove the classification.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104093"},"PeriodicalIF":1.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fundamental quasisymmetric functions in superspace 超空间中的基本拟对称函数
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-12-06 DOI: 10.1016/j.ejc.2024.104096
Susanna Fishel , Jessica Gatica , Luc Lapointe , María Elena Pinto
{"title":"Fundamental quasisymmetric functions in superspace","authors":"Susanna Fishel ,&nbsp;Jessica Gatica ,&nbsp;Luc Lapointe ,&nbsp;María Elena Pinto","doi":"10.1016/j.ejc.2024.104096","DOIUrl":"10.1016/j.ejc.2024.104096","url":null,"abstract":"<div><div>The fundamental quasisymmetric functions in superspace are a generalization of the fundamental quasisymmetric functions involving anticommuting variables. We obtain the action of the product, coproduct, and antipode on the fundamental quasisymmetric functions in superspace. We also extend to superspace the well known expansion of the Schur functions in terms of fundamental quasisymmetric functions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104096"},"PeriodicalIF":1.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey of degree-boundedness 学位限制的调查
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-12-04 DOI: 10.1016/j.ejc.2024.104092
Xiying Du , Rose McCarty
{"title":"A survey of degree-boundedness","authors":"Xiying Du ,&nbsp;Rose McCarty","doi":"10.1016/j.ejc.2024.104092","DOIUrl":"10.1016/j.ejc.2024.104092","url":null,"abstract":"<div><div>Suppose a graph has no large balanced bicliques, but has large minimum degree. Then what can we say about its induced subgraphs? This question motivates the study of degree-boundedness, which is like <span><math><mi>χ</mi></math></span>-boundedness but for minimum degree instead of chromatic number. We survey this area with an eye towards open problems.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"129 ","pages":"Article 104092"},"PeriodicalIF":1.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coloring zonotopal quadrangulations of the projective space 投影空间的分区四边形着色
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-12-02 DOI: 10.1016/j.ejc.2024.104089
Masahiro Hachimori , Atsuhiro Nakamoto , Kenta Ozeki
{"title":"Coloring zonotopal quadrangulations of the projective space","authors":"Masahiro Hachimori ,&nbsp;Atsuhiro Nakamoto ,&nbsp;Kenta Ozeki","doi":"10.1016/j.ejc.2024.104089","DOIUrl":"10.1016/j.ejc.2024.104089","url":null,"abstract":"<div><div>A quadrangulation on a surface <span><math><msup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a map of a simple graph on <span><math><msup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that each 2-dimensional face is quadrangular. Youngs proved that every quadrangulation on the projective plane <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is either bipartite or 4-chromatic. It is a surprising result since every quadrangulation on an orientable surface with sufficiently high edge-width is 3-colorable. Kaiser and Stehlík defined a <span><math><mi>d</mi></math></span>-dimensional quadrangulation on the <span><math><mi>d</mi></math></span>-dimensional projective space <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for any <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and proved that any such quadrangulation has chromatic number at least <span><math><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></math></span> if it is not bipartite. In this paper, we define another kind of <span><math><mi>d</mi></math></span>-dimensional quadrangulations of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for any <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and prove that such a quadrangulation <span><math><mi>Q</mi></math></span> is always 4-chromatic if <span><math><mi>Q</mi></math></span> is non-bipartite and satisfies a special geometric condition related to a zonotopal tiling of a <span><math><mi>d</mi></math></span>-dimensional zonotope.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104089"},"PeriodicalIF":1.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rectangulotopes Rectangulotopes
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-29 DOI: 10.1016/j.ejc.2024.104090
Jean Cardinal , Vincent Pilaud
{"title":"Rectangulotopes","authors":"Jean Cardinal ,&nbsp;Vincent Pilaud","doi":"10.1016/j.ejc.2024.104090","DOIUrl":"10.1016/j.ejc.2024.104090","url":null,"abstract":"<div><div>Rectangulations are decompositions of a square into finitely many axis-aligned rectangles. We describe realizations of <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional polytopes associated with two combinatorial families of rectangulations composed of <span><math><mi>n</mi></math></span> rectangles. They are defined as quotientopes of natural lattice congruences on the weak Bruhat order on permutations in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and their skeleta are flip graphs on rectangulations. We give simple vertex and facet descriptions of these polytopes, in particular elementary formulas for computing the coordinates of the vertex corresponding to each rectangulation, in the spirit of J.-L. Loday’s realization of the associahedron.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104090"},"PeriodicalIF":1.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the order of semiregular automorphisms of cubic vertex-transitive graphs 论立方顶点变换图的半圆自动形的阶数
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-26 DOI: 10.1016/j.ejc.2024.104091
Marco Barbieri , Valentina Grazian , Pablo Spiga
{"title":"On the order of semiregular automorphisms of cubic vertex-transitive graphs","authors":"Marco Barbieri ,&nbsp;Valentina Grazian ,&nbsp;Pablo Spiga","doi":"10.1016/j.ejc.2024.104091","DOIUrl":"10.1016/j.ejc.2024.104091","url":null,"abstract":"<div><div>We prove that, if <span><math><mi>Γ</mi></math></span> is a finite connected cubic vertex-transitive graph, then either there exists a semiregular automorphism of <span><math><mi>Γ</mi></math></span> of order at least 6, or the number of vertices of <span><math><mi>Γ</mi></math></span> is bounded above by an absolute constant.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104091"},"PeriodicalIF":1.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
More on rainbow cliques in edge-colored graphs 边色图中彩虹小群的更多内容
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-25 DOI: 10.1016/j.ejc.2024.104088
Xiao-Chuan Liu , Danni Peng , Xu Yang
{"title":"More on rainbow cliques in edge-colored graphs","authors":"Xiao-Chuan Liu ,&nbsp;Danni Peng ,&nbsp;Xu Yang","doi":"10.1016/j.ejc.2024.104088","DOIUrl":"10.1016/j.ejc.2024.104088","url":null,"abstract":"<div><div>In an edge-colored graph <span><math><mi>G</mi></math></span>, a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a complete subgraph on <span><math><mi>k</mi></math></span> vertices in which all the edges have distinct colors. Let <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of edges and colors in <span><math><mi>G</mi></math></span>, respectively. In this paper, we show that for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, if <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>ɛ</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then for sufficiently large <span><math><mi>n</mi></math></span>, the number of rainbow cliques <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <span><math><mi>G</mi></math></span> is <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div><div>We also characterize the extremal graphs <span><math><mi>G</mi></math></span> without a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, for <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></mrow></math></span>, when <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is maximum.</div><div>Our results not only address existing questions but also complete the findings of Ehard and Mohr (2020).</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104088"},"PeriodicalIF":1.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When (signless) Laplacian coefficients meet matchings of subdivision 当(无符号)拉普拉斯系数与细分匹配时
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-13 DOI: 10.1016/j.ejc.2024.104087
Zhibin Du
{"title":"When (signless) Laplacian coefficients meet matchings of subdivision","authors":"Zhibin Du","doi":"10.1016/j.ejc.2024.104087","DOIUrl":"10.1016/j.ejc.2024.104087","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph, whose subdivision is denoted by <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> be the characteristic polynomial of the Laplacian matrix of <span><math><mi>G</mi></math></span>. In 1974, Kelmans and Chelnokov (1974) gave a graph theoretical interpretation for the coefficients of <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, in terms of the spanning forests of <span><math><mi>G</mi></math></span>. In this paper, we present another graph theoretical interpretation of the Laplacian coefficients by using the matching numbers of <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, generalizing the cases of trees and unicyclic graphs, which were established by Zhou and Gutman (2008) and Chen and Yan (2021), respectively. Analogously, a graph theoretical interpretation of the signless Laplacian coefficients is also presented, whose previous graph theoretical interpretation is based on the so-called TU-subgraphs (the spanning subgraphs whose components are trees or odd-unicyclic graphs) due to Cvetković et al. (2007). Some formulas related to the number of spanning trees are also given.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104087"},"PeriodicalIF":1.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信