A combinatorial characterization of S2 binomial edge ideals

IF 1 3区 数学 Q1 MATHEMATICS
Davide Bolognini , Antonio Macchia , Giancarlo Rinaldo , Francesco Strazzanti
{"title":"A combinatorial characterization of S2 binomial edge ideals","authors":"Davide Bolognini ,&nbsp;Antonio Macchia ,&nbsp;Giancarlo Rinaldo ,&nbsp;Francesco Strazzanti","doi":"10.1016/j.ejc.2025.104123","DOIUrl":null,"url":null,"abstract":"<div><div>Several algebraic properties of a binomial edge ideal <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> can be interpreted in terms of combinatorial properties of its associated graph <span><math><mi>G</mi></math></span>. In particular, the so-called <em>cut sets</em> of a graph <span><math><mi>G</mi></math></span>, special sets of vertices that disconnect <span><math><mi>G</mi></math></span>, play an important role since they are in bijection with the minimal prime ideals of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>. In this paper we establish the first graph-theoretical characterization of binomial edge ideals <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> satisfying Serre’s condition <span><math><mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span> by proving that this is equivalent to having <span><math><mi>G</mi></math></span> <em>accessible</em>, which means that <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> is unmixed and the cut-point sets of <span><math><mi>G</mi></math></span> form an accessible set system. The proof relies on the combinatorial structure of the Stanley–Reisner simplicial complex of a multigraded generic initial ideal of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>, whose facets can be described in terms of cut-point sets. Another key step in the proof consists in proving the equivalence between accessibility and strong accessibility for the collection of cut sets of <span><math><mi>G</mi></math></span> with <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> unmixed. This result, interesting on its own, provides the first relevant class of set systems for which the previous two notions are equivalent.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104123"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Several algebraic properties of a binomial edge ideal JG can be interpreted in terms of combinatorial properties of its associated graph G. In particular, the so-called cut sets of a graph G, special sets of vertices that disconnect G, play an important role since they are in bijection with the minimal prime ideals of JG. In this paper we establish the first graph-theoretical characterization of binomial edge ideals JG satisfying Serre’s condition (S2) by proving that this is equivalent to having G accessible, which means that JG is unmixed and the cut-point sets of G form an accessible set system. The proof relies on the combinatorial structure of the Stanley–Reisner simplicial complex of a multigraded generic initial ideal of JG, whose facets can be described in terms of cut-point sets. Another key step in the proof consists in proving the equivalence between accessibility and strong accessibility for the collection of cut sets of G with JG unmixed. This result, interesting on its own, provides the first relevant class of set systems for which the previous two notions are equivalent.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信