European Journal of Combinatorics最新文献

筛选
英文 中文
When (signless) Laplacian coefficients meet matchings of subdivision 当(无符号)拉普拉斯系数与细分匹配时
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-13 DOI: 10.1016/j.ejc.2024.104087
Zhibin Du
{"title":"When (signless) Laplacian coefficients meet matchings of subdivision","authors":"Zhibin Du","doi":"10.1016/j.ejc.2024.104087","DOIUrl":"10.1016/j.ejc.2024.104087","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph, whose subdivision is denoted by <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> be the characteristic polynomial of the Laplacian matrix of <span><math><mi>G</mi></math></span>. In 1974, Kelmans and Chelnokov (1974) gave a graph theoretical interpretation for the coefficients of <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, in terms of the spanning forests of <span><math><mi>G</mi></math></span>. In this paper, we present another graph theoretical interpretation of the Laplacian coefficients by using the matching numbers of <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, generalizing the cases of trees and unicyclic graphs, which were established by Zhou and Gutman (2008) and Chen and Yan (2021), respectively. Analogously, a graph theoretical interpretation of the signless Laplacian coefficients is also presented, whose previous graph theoretical interpretation is based on the so-called TU-subgraphs (the spanning subgraphs whose components are trees or odd-unicyclic graphs) due to Cvetković et al. (2007). Some formulas related to the number of spanning trees are also given.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104087"},"PeriodicalIF":1.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Freehedra are short 自由面很短
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-12 DOI: 10.1016/j.ejc.2024.104084
Daria Poliakova
{"title":"Freehedra are short","authors":"Daria Poliakova","doi":"10.1016/j.ejc.2024.104084","DOIUrl":"10.1016/j.ejc.2024.104084","url":null,"abstract":"<div><div>We prove the combinatorial property of shortness for freehedra. Note that associahedra, a related family of polytopes, are not short.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104084"},"PeriodicalIF":1.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Erdős–Tuza–Valtr conjecture 关于厄尔多斯-图扎-瓦尔特猜想
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-08 DOI: 10.1016/j.ejc.2024.104085
Jineon Baek
{"title":"On the Erdős–Tuza–Valtr conjecture","authors":"Jineon Baek","doi":"10.1016/j.ejc.2024.104085","DOIUrl":"10.1016/j.ejc.2024.104085","url":null,"abstract":"<div><div>The Erdős–Szekeres conjecture states that any set of more than <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> points in the plane with no three on a line contains the vertices of a convex <span><math><mi>n</mi></math></span>-gon. Erdős, Tuza, and Valtr strengthened the conjecture by stating that any set of more than <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mi>n</mi><mo>−</mo><mi>b</mi></mrow><mrow><mi>a</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>i</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> points in a plane either contains the vertices of a convex <span><math><mi>n</mi></math></span>-gon, <span><math><mi>a</mi></math></span> points lying on a concave downward curve, or <span><math><mi>b</mi></math></span> points lying on a concave upward curve. They also showed that the generalization is actually equivalent to the Erdős–Szekeres conjecture. We prove the first new case of the Erdős–Tuza–Valtr conjecture since the original 1935 paper of Erdős and Szekeres. Namely, we show that any set of <span><math><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>2</mn></mrow></math></span> points in the plane with no three points on a line and no two points sharing the same <span><math><mi>x</mi></math></span>-coordinate either contains 4 points lying on a concave downward curve or the vertices of a convex <span><math><mi>n</mi></math></span>-gon. The proof is also formalized in <em>Lean 4</em>, a computer proof assistance, to ensure the correctness of the proof.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104085"},"PeriodicalIF":1.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A combinatorial PROP for bialgebras 双桥的组合 PROP
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-05 DOI: 10.1016/j.ejc.2024.104086
Jorge Becerra
{"title":"A combinatorial PROP for bialgebras","authors":"Jorge Becerra","doi":"10.1016/j.ejc.2024.104086","DOIUrl":"10.1016/j.ejc.2024.104086","url":null,"abstract":"<div><div>It is a classical result that the category of finitely-generated free monoids serves as a PROP for commutative bialgebras. Attaching permutations to fix the order of multiplication, we construct an extension of this category that is equivalent to the PROP for bialgebras.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104086"},"PeriodicalIF":1.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signed Mahonian polynomials on derangements in classical Weyl groups 经典韦尔群出射上的有符号马洪多项式
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-11-04 DOI: 10.1016/j.ejc.2024.104083
Kathy Q. Ji , Dax T.X. Zhang
{"title":"Signed Mahonian polynomials on derangements in classical Weyl groups","authors":"Kathy Q. Ji ,&nbsp;Dax T.X. Zhang","doi":"10.1016/j.ejc.2024.104083","DOIUrl":"10.1016/j.ejc.2024.104083","url":null,"abstract":"<div><div>The polynomial of the major index <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> over the subset <span><math><mi>T</mi></math></span> of the Coxeter group <span><math><mi>W</mi></math></span> is called the Mahonian polynomial over <span><math><mi>T</mi></math></span>, where <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is a Mahonian statistic of an element <span><math><mrow><mi>σ</mi><mo>∈</mo><mi>T</mi></mrow></math></span>, whereas the polynomial of the major index <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> with the sign <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></msup></math></span> over the subset <span><math><mi>T</mi></math></span> is referred to as the signed Mahonian polynomial over <span><math><mi>T</mi></math></span>, where <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is the length of <span><math><mrow><mi>σ</mi><mo>∈</mo><mi>T</mi></mrow></math></span>. Gessel, Wachs, and Chow established formulas for the Mahonian polynomials over the sets of derangements in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the hyperoctahedral group <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By extending Wachs’ approach and employing a refinement of Stanley’s shuffle theorem established in our recent paper (Ji and Zhang, 2024), we derive a formula for the Mahonian polynomials over the set of derangements in the even-signed permutation group <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. This completes a picture which is now known for all the classical Weyl groups. Gessel–Simion, Adin–Gessel–Roichman, and Biagioli previously established formulas for the signed Mahonian polynomials over the classical Weyl groups. Building upon their formulas, we derive some new formulas for the signed Mahonian polynomials over the set of derangements in classical Weyl groups. As applications of the formulas for the (signed) Mahonian polynomials over the sets of derangements in the classical Weyl groups, we obtain enumerative formulas of the number of derangements in classical Weyl groups with even lengths.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104083"},"PeriodicalIF":1.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degree conditions for Ramsey goodness of paths 拉姆齐良好路径的程度条件
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-18 DOI: 10.1016/j.ejc.2024.104082
Lucas Aragão , João Pedro Marciano , Walner Mendonça
{"title":"Degree conditions for Ramsey goodness of paths","authors":"Lucas Aragão ,&nbsp;João Pedro Marciano ,&nbsp;Walner Mendonça","doi":"10.1016/j.ejc.2024.104082","DOIUrl":"10.1016/j.ejc.2024.104082","url":null,"abstract":"<div><div>A classical result of Chvátal implies that if <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then any colouring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in red and blue contains either a monochromatic red <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> or a monochromatic blue <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We study a natural generalisation of his result, determining the exact minimum degree condition for a graph <span><math><mi>G</mi></math></span> on <span><math><mrow><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> vertices which guarantees that the same Ramsey property holds in <span><math><mi>G</mi></math></span>. In particular, using a slight generalisation of a result of Haxell, we show that <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mi>t</mi><mo>/</mo><mn>2</mn></mrow></mfenced></mrow></math></span> suffices, and that this bound is best possible. We also use a classical result of Bollobás, Erdős, and Straus to prove a tight minimum degree condition in the case <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104082"},"PeriodicalIF":1.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the faces of unigraphic 3-polytopes 关于单图式 3 多面体的面
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-16 DOI: 10.1016/j.ejc.2024.104081
Riccardo W. Maffucci
{"title":"On the faces of unigraphic 3-polytopes","authors":"Riccardo W. Maffucci","doi":"10.1016/j.ejc.2024.104081","DOIUrl":"10.1016/j.ejc.2024.104081","url":null,"abstract":"<div><div>A 3-polytope is a 3-connected, planar graph. It is called unigraphic if it does not share its vertex degree sequence with any other 3-polytope, up to graph isomorphism. The classification of unigraphic 3-polytopes appears to be a difficult problem.</div><div>In this paper we prove that, apart from pyramids, all unigraphic 3-polytopes have no <span><math><mi>n</mi></math></span>-gonal faces for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>. Our method involves defining several planar graph transformations on a given 3-polytope containing an <span><math><mi>n</mi></math></span>-gonal face with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>. The delicate part is to prove that, for every such 3-polytope, at least one of these transformations both preserves 3-connectivity, and is not an isomorphism.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104081"},"PeriodicalIF":1.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounded unique representation bases for the integers 整数的有界唯一表示基
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-16 DOI: 10.1016/j.ejc.2024.104080
Yong-Gao Chen, Jin-Hui Fang
{"title":"Bounded unique representation bases for the integers","authors":"Yong-Gao Chen,&nbsp;Jin-Hui Fang","doi":"10.1016/j.ejc.2024.104080","DOIUrl":"10.1016/j.ejc.2024.104080","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For a nonempty set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of integers and an integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the number of representations of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the number of representations of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Erdős and Turán (1941) posed the profound conjecture: if &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a set of positive integers such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all sufficiently large &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with logarithmic growth such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all integers &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we prove that, for any positive function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, there is a bounded set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of integers such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all integers &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all positi","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104080"},"PeriodicalIF":1.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induced subgraph density. II. Sparse and dense sets in cographs 诱导子图密度II.cographs 中的稀疏集和密集集
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-09 DOI: 10.1016/j.ejc.2024.104075
Jacob Fox , Tung Nguyen , Alex Scott , Paul Seymour
{"title":"Induced subgraph density. II. Sparse and dense sets in cographs","authors":"Jacob Fox ,&nbsp;Tung Nguyen ,&nbsp;Alex Scott ,&nbsp;Paul Seymour","doi":"10.1016/j.ejc.2024.104075","DOIUrl":"10.1016/j.ejc.2024.104075","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A well-known theorem of Rödl says that for every graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that if &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; does not contain an induced copy of &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that one of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; has edge-density at most &lt;span&gt;&lt;math&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. But how does &lt;span&gt;&lt;math&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; depend on &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, Rödl’s theorem holds with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Our first result shows that it is true when &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Indeed, in that case we can take &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and insist that one of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; has maximum degree at most &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;).&lt;/div&gt;&lt;div&gt;Second, we will show that every graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; that can be obtained by substitution from copies of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;em&gt;viral&lt;/em&gt; if there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104075"},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The diameter of randomly twisted hypercubes 随机扭曲超立方体的直径
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-09 DOI: 10.1016/j.ejc.2024.104078
Lucas Aragão , Maurício Collares , Gabriel Dahia , João Pedro Marciano
{"title":"The diameter of randomly twisted hypercubes","authors":"Lucas Aragão ,&nbsp;Maurício Collares ,&nbsp;Gabriel Dahia ,&nbsp;João Pedro Marciano","doi":"10.1016/j.ejc.2024.104078","DOIUrl":"10.1016/j.ejc.2024.104078","url":null,"abstract":"<div><div>The <span><math><mi>n</mi></math></span>-dimensional random twisted hypercube <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is constructed recursively by taking two instances of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, with any joint distribution, and adding a random perfect matching between their vertex sets. Benjamini, Dikstein, Gross, and Zhukovskii showed that its diameter is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mo>log</mo><mo>log</mo><mi>n</mi><mo>/</mo><mo>log</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with high probability and at least <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow></math></span>. We improve their upper bound by showing that <span><math><mrow><mi>diam</mi><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mfrac><mrow><mi>n</mi></mrow><mrow><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow></mfrac></mrow></math></span> with high probability.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104078"},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信