Jacob Fox , Tung Nguyen , Alex Scott , Paul Seymour
{"title":"诱导子图密度II.cographs 中的稀疏集和密集集","authors":"Jacob Fox , Tung Nguyen , Alex Scott , Paul Seymour","doi":"10.1016/j.ejc.2024.104075","DOIUrl":null,"url":null,"abstract":"<div><div>A well-known theorem of Rödl says that for every graph <span><math><mi>H</mi></math></span>, and every <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span>, there exists <span><math><mrow><mi>δ</mi><mo>></mo><mn>0</mn></mrow></math></span> such that if <span><math><mi>G</mi></math></span> does not contain an induced copy of <span><math><mi>H</mi></math></span>, then there exists <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≥</mo><mi>δ</mi><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has edge-density at most <span><math><mi>ɛ</mi></math></span>. But how does <span><math><mi>δ</mi></math></span> depend on <span><math><mi>ϵ</mi></math></span>? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all <span><math><mi>H</mi></math></span> there exists <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span> such that for all <span><math><mi>ɛ</mi></math></span> with <span><math><mrow><mn>0</mn><mo><</mo><mi>ɛ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, Rödl’s theorem holds with <span><math><mrow><mi>δ</mi><mo>=</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup></mrow></math></span>. This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs <span><math><mi>H</mi></math></span>. Our first result shows that it is true when <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>. Indeed, in that case we can take <span><math><mrow><mi>δ</mi><mo>=</mo><mi>ɛ</mi></mrow></math></span>, and insist that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has maximum degree at most <span><math><mrow><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span>).</div><div>Second, we will show that every graph <span><math><mi>H</mi></math></span> that can be obtained by substitution from copies of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say <span><math><mi>H</mi></math></span> is <em>viral</em> if there exists <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span> such that for all <span><math><mi>ɛ</mi></math></span> with <span><math><mrow><mn>0</mn><mo><</mo><mi>ɛ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, if <span><math><mi>G</mi></math></span> contains at most <span><math><mrow><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></msup></mrow></math></span> copies of <span><math><mi>H</mi></math></span> as induced subgraphs, then there exists <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≥</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has edge-density at most <span><math><mi>ɛ</mi></math></span>. We will show that <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is viral, using a “polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-removal lemma” of Alon and Fox. We will also show that the class of viral graphs is closed under vertex-substitution.</div><div>Finally, we give a different strengthening of Rödl’s theorem: we show that if <span><math><mi>G</mi></math></span> does not contain an induced copy of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, then its vertices can be partitioned into at most <span><math><mrow><mn>480</mn><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> subsets <span><math><mi>X</mi></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has maximum degree at most <span><math><mrow><mi>ɛ</mi><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced subgraph density. II. Sparse and dense sets in cographs\",\"authors\":\"Jacob Fox , Tung Nguyen , Alex Scott , Paul Seymour\",\"doi\":\"10.1016/j.ejc.2024.104075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A well-known theorem of Rödl says that for every graph <span><math><mi>H</mi></math></span>, and every <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span>, there exists <span><math><mrow><mi>δ</mi><mo>></mo><mn>0</mn></mrow></math></span> such that if <span><math><mi>G</mi></math></span> does not contain an induced copy of <span><math><mi>H</mi></math></span>, then there exists <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≥</mo><mi>δ</mi><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has edge-density at most <span><math><mi>ɛ</mi></math></span>. But how does <span><math><mi>δ</mi></math></span> depend on <span><math><mi>ϵ</mi></math></span>? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all <span><math><mi>H</mi></math></span> there exists <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span> such that for all <span><math><mi>ɛ</mi></math></span> with <span><math><mrow><mn>0</mn><mo><</mo><mi>ɛ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, Rödl’s theorem holds with <span><math><mrow><mi>δ</mi><mo>=</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup></mrow></math></span>. This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs <span><math><mi>H</mi></math></span>. Our first result shows that it is true when <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>. Indeed, in that case we can take <span><math><mrow><mi>δ</mi><mo>=</mo><mi>ɛ</mi></mrow></math></span>, and insist that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has maximum degree at most <span><math><mrow><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span>).</div><div>Second, we will show that every graph <span><math><mi>H</mi></math></span> that can be obtained by substitution from copies of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say <span><math><mi>H</mi></math></span> is <em>viral</em> if there exists <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span> such that for all <span><math><mi>ɛ</mi></math></span> with <span><math><mrow><mn>0</mn><mo><</mo><mi>ɛ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, if <span><math><mi>G</mi></math></span> contains at most <span><math><mrow><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></msup></mrow></math></span> copies of <span><math><mi>H</mi></math></span> as induced subgraphs, then there exists <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≥</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi></mrow></msup><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has edge-density at most <span><math><mi>ɛ</mi></math></span>. We will show that <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is viral, using a “polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-removal lemma” of Alon and Fox. We will also show that the class of viral graphs is closed under vertex-substitution.</div><div>Finally, we give a different strengthening of Rödl’s theorem: we show that if <span><math><mi>G</mi></math></span> does not contain an induced copy of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, then its vertices can be partitioned into at most <span><math><mrow><mn>480</mn><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> subsets <span><math><mi>X</mi></math></span> such that one of <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> has maximum degree at most <span><math><mrow><mi>ɛ</mi><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001604\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001604","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
罗德尔(Rödl)的一个著名定理指出,对于每个图 H 和每个ɛ>0,都存在 δ>0,这样,如果 G 不包含 H 的诱导副本,则存在 X⊆V(G),其中 |X|≥δ|G| 这样,G[X],G¯[X]中的一个边密度最多为ɛ。但是,δ 如何取决于ϵ?福克斯和苏达科夫猜想,这种依赖性最多是多项式的:对于所有 H,存在 c>0 这样的条件:对于所有 ɛ 且 0<ɛ≤1/2 时,罗德尔定理成立,δ=ɛc。我们的第一个结果表明,当 H=P4 时,这个猜想成立。事实上,在这种情况下,我们可以取 δ=ɛ,并坚持认为 G[X],G¯[X] 中的一个图的最大度最多为ɛ2|G|)。其次,我们将证明每个可以从 P4 的副本中通过替换得到的图 H 都满足福克斯-苏达科夫猜想。为了证明这一点,我们需要使用一个更强的性质。如果存在 c>0 这样的情况,即对于所有 0<ɛ≤1/2 的ɛ,如果 G 最多包含 H 的ɛc|G|||H|副本作为诱导子图,那么存在 X⊆V(G),其中 |X|≥ɛc|G| 这样的情况,即 G[X],G¯[X] 中的一个边密度最多为ɛ。我们将利用 Alon 和 Fox 的 "多项式 P4-removal Lemma "来证明 P4 是病毒式的。最后,我们将给出罗德尔定理的另一个强化:我们将证明,如果 G 不包含 P4 的诱导副本,那么它的顶点最多可以划分为 480ɛ-4 个子集 X,使得 G[X],G¯[X] 中的一个子集的最大度最多为ɛ|X|。
Induced subgraph density. II. Sparse and dense sets in cographs
A well-known theorem of Rödl says that for every graph , and every , there exists such that if does not contain an induced copy of , then there exists with such that one of has edge-density at most . But how does depend on ? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all there exists such that for all with , Rödl’s theorem holds with . This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs . Our first result shows that it is true when . Indeed, in that case we can take , and insist that one of has maximum degree at most ).
Second, we will show that every graph that can be obtained by substitution from copies of satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say is viral if there exists such that for all with , if contains at most copies of as induced subgraphs, then there exists with such that one of has edge-density at most . We will show that is viral, using a “polynomial -removal lemma” of Alon and Fox. We will also show that the class of viral graphs is closed under vertex-substitution.
Finally, we give a different strengthening of Rödl’s theorem: we show that if does not contain an induced copy of , then its vertices can be partitioned into at most subsets such that one of has maximum degree at most .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.