Symmetries of voltage operations on polytopes, maps and maniplexes

IF 1 3区 数学 Q1 MATHEMATICS
Isabel Hubard , Elías Mochán , Antonio Montero
{"title":"Symmetries of voltage operations on polytopes, maps and maniplexes","authors":"Isabel Hubard ,&nbsp;Elías Mochán ,&nbsp;Antonio Montero","doi":"10.1016/j.ejc.2025.104132","DOIUrl":null,"url":null,"abstract":"<div><div>Voltage operations extend traditional geometric and combinatorial operations (such as medial, truncation, prism, and pyramid over a polytope) to operations on maniplexes, maps, polytopes, and hypertopes. In classical operations, the symmetries of the original object remain in the resulting one, but sometimes additional symmetries are created; the same situation arises with voltage operations. We characterise the automorphisms of the new object that are derived from the original one and use this to bound the number of flag orbits (under the action of its automorphism group) of the new object in terms of the original one. The conditions under which the automorphism group of the original object is the same as the automorphism group of the resulting object are given. We also look at the cases where there is additional symmetry which can be accurately described due to the symmetries of the operation itself.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104132"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000149","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage operations extend traditional geometric and combinatorial operations (such as medial, truncation, prism, and pyramid over a polytope) to operations on maniplexes, maps, polytopes, and hypertopes. In classical operations, the symmetries of the original object remain in the resulting one, but sometimes additional symmetries are created; the same situation arises with voltage operations. We characterise the automorphisms of the new object that are derived from the original one and use this to bound the number of flag orbits (under the action of its automorphism group) of the new object in terms of the original one. The conditions under which the automorphism group of the original object is the same as the automorphism group of the resulting object are given. We also look at the cases where there is additional symmetry which can be accurately described due to the symmetries of the operation itself.
多面体、映射和复形上电压操作的对称性
电压操作将传统的几何和组合操作(如多面体上的中间、截断、棱柱和金字塔)扩展到多面体、映射、多面体和超拓扑上的操作。在经典运算中,原对象的对称性保留在结果中,但有时会产生额外的对称性;电压操作也会出现同样的情况。我们描述了从原对象派生出来的新对象的自同构,并用它来约束新对象在原对象的自同构群作用下的旗子轨道的数目。给出了原对象的自同构群与结果对象的自同构群相同的条件。我们也会看到,由于操作本身的对称性,有额外的对称性可以被准确描述的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信