Non-existence of two infinite families of strongly regular graphs

IF 1 3区 数学 Q1 MATHEMATICS
Jack H. Koolen , Brhane Gebremichel , Jeong Rye Park , Jongyook Park
{"title":"Non-existence of two infinite families of strongly regular graphs","authors":"Jack H. Koolen ,&nbsp;Brhane Gebremichel ,&nbsp;Jeong Rye Park ,&nbsp;Jongyook Park","doi":"10.1016/j.ejc.2025.104121","DOIUrl":null,"url":null,"abstract":"<div><div>For a positive integer <span><math><mi>t</mi></math></span>, a putative strongly regular graph <span><math><mi>G</mi></math></span> with parameters <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>k</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo></mrow></mrow><mrow><mi>μ</mi></mrow></mfrac><mo>,</mo><mn>2</mn><mi>t</mi><mrow><mo>(</mo><mn>4</mn><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mi>μ</mi><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mn>32</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>4</mn><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mn>8</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> satisfies both the Krein condition and the absolute bound. Also the multiplicities of the eigenvalues of the graph <span><math><mi>G</mi></math></span> are integers. This may mean that such a strongly regular graph exists. However, Koolen and Gebremichel proved that such a strongly regular graph does not exist for <span><math><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow></math></span>. In this paper, we generalize their method for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and rule out the infinite family of such strongly regular graphs. In order to do so, we find a restriction on the orders of two large maximal cliques intersecting in many vertices. And we also look at the case where the equality of the claw-bound holds to find an upper bound on the order of a coclique in a local graph (when <span><math><mi>G</mi></math></span> is not Terwilliger). In a similar fashion, we note that one can also rule out another infinite family of putative strongly regular graphs with parameters <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>k</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo></mrow></mrow><mrow><mi>μ</mi></mrow></mfrac><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mn>4</mn><mi>t</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mi>μ</mi><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mn>32</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>64</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>44</mn><mi>t</mi><mo>+</mo><mn>9</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mn>8</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>12</mn><mi>t</mi><mo>+</mo><mn>5</mn><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>. With the generalized method we are able to rule out two infinite families of putative strongly regular graphs. We are sure that this generalized method can be applied to rule out more putative strongly regular graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104121"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000034","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a positive integer t, a putative strongly regular graph G with parameters (n,k,λ,μ)=(1+k+k(k1λ)μ,2t(4t+1)μ,(2t+1)(32t3+4t1),(2t+1)(8t2+1)) satisfies both the Krein condition and the absolute bound. Also the multiplicities of the eigenvalues of the graph G are integers. This may mean that such a strongly regular graph exists. However, Koolen and Gebremichel proved that such a strongly regular graph does not exist for t=1. In this paper, we generalize their method for all t1 and rule out the infinite family of such strongly regular graphs. In order to do so, we find a restriction on the orders of two large maximal cliques intersecting in many vertices. And we also look at the case where the equality of the claw-bound holds to find an upper bound on the order of a coclique in a local graph (when G is not Terwilliger). In a similar fashion, we note that one can also rule out another infinite family of putative strongly regular graphs with parameters (n,k,λ,μ)=(1+k+k(k1λ)μ,(2t+1)(4t+3)μ,(2t+2)(32t3+64t2+44t+9),(2t+2)(8t2+12t+5)). With the generalized method we are able to rule out two infinite families of putative strongly regular graphs. We are sure that this generalized method can be applied to rule out more putative strongly regular graphs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信