{"title":"局部密集图中稀疏诱导子图的计数","authors":"Rajko Nenadov","doi":"10.1016/j.ejc.2025.104125","DOIUrl":null,"url":null,"abstract":"<div><div>An <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> is locally dense if every induced subgraph of size larger than <span><math><mrow><mi>ζ</mi><mi>n</mi></mrow></math></span> has density at least <span><math><mrow><mi>d</mi><mo>></mo><mn>0</mn></mrow></math></span>, for some parameters <span><math><mrow><mi>ζ</mi><mo>,</mo><mi>d</mi><mo>></mo><mn>0</mn></mrow></math></span>. We show that the number of induced subgraphs of <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> vertices and maximum degree significantly smaller than <span><math><mrow><mi>d</mi><mi>m</mi></mrow></math></span> is roughly <span><math><mfenced><mrow><mfrac><mrow><mi>ζ</mi><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mrow></mfenced></math></span>, for <span><math><mrow><mi>m</mi><mo>≪</mo><mi>ζ</mi><mi>n</mi></mrow></math></span> which is not too small. This generalises a result of Kohayakawa, Lee, Rödl, and Samotij on the number of independent sets in locally dense graphs. As an application, we slightly improve a result of Balogh, Chen, and Luo on the generalised Erdős–Rogers function for graphs with small extremal number.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104125"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting sparse induced subgraphs in locally dense graphs\",\"authors\":\"Rajko Nenadov\",\"doi\":\"10.1016/j.ejc.2025.104125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> is locally dense if every induced subgraph of size larger than <span><math><mrow><mi>ζ</mi><mi>n</mi></mrow></math></span> has density at least <span><math><mrow><mi>d</mi><mo>></mo><mn>0</mn></mrow></math></span>, for some parameters <span><math><mrow><mi>ζ</mi><mo>,</mo><mi>d</mi><mo>></mo><mn>0</mn></mrow></math></span>. We show that the number of induced subgraphs of <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> vertices and maximum degree significantly smaller than <span><math><mrow><mi>d</mi><mi>m</mi></mrow></math></span> is roughly <span><math><mfenced><mrow><mfrac><mrow><mi>ζ</mi><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mrow></mfenced></math></span>, for <span><math><mrow><mi>m</mi><mo>≪</mo><mi>ζ</mi><mi>n</mi></mrow></math></span> which is not too small. This generalises a result of Kohayakawa, Lee, Rödl, and Samotij on the number of independent sets in locally dense graphs. As an application, we slightly improve a result of Balogh, Chen, and Luo on the generalised Erdős–Rogers function for graphs with small extremal number.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"126 \",\"pages\":\"Article 104125\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000071\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Counting sparse induced subgraphs in locally dense graphs
An -vertex graph is locally dense if every induced subgraph of size larger than has density at least , for some parameters . We show that the number of induced subgraphs of with vertices and maximum degree significantly smaller than is roughly , for which is not too small. This generalises a result of Kohayakawa, Lee, Rödl, and Samotij on the number of independent sets in locally dense graphs. As an application, we slightly improve a result of Balogh, Chen, and Luo on the generalised Erdős–Rogers function for graphs with small extremal number.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.