局部密集图中稀疏诱导子图的计数

IF 1 3区 数学 Q1 MATHEMATICS
Rajko Nenadov
{"title":"局部密集图中稀疏诱导子图的计数","authors":"Rajko Nenadov","doi":"10.1016/j.ejc.2025.104125","DOIUrl":null,"url":null,"abstract":"<div><div>An <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> is locally dense if every induced subgraph of size larger than <span><math><mrow><mi>ζ</mi><mi>n</mi></mrow></math></span> has density at least <span><math><mrow><mi>d</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, for some parameters <span><math><mrow><mi>ζ</mi><mo>,</mo><mi>d</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We show that the number of induced subgraphs of <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> vertices and maximum degree significantly smaller than <span><math><mrow><mi>d</mi><mi>m</mi></mrow></math></span> is roughly <span><math><mfenced><mrow><mfrac><mrow><mi>ζ</mi><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mrow></mfenced></math></span>, for <span><math><mrow><mi>m</mi><mo>≪</mo><mi>ζ</mi><mi>n</mi></mrow></math></span> which is not too small. This generalises a result of Kohayakawa, Lee, Rödl, and Samotij on the number of independent sets in locally dense graphs. As an application, we slightly improve a result of Balogh, Chen, and Luo on the generalised Erdős–Rogers function for graphs with small extremal number.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104125"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting sparse induced subgraphs in locally dense graphs\",\"authors\":\"Rajko Nenadov\",\"doi\":\"10.1016/j.ejc.2025.104125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> is locally dense if every induced subgraph of size larger than <span><math><mrow><mi>ζ</mi><mi>n</mi></mrow></math></span> has density at least <span><math><mrow><mi>d</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, for some parameters <span><math><mrow><mi>ζ</mi><mo>,</mo><mi>d</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We show that the number of induced subgraphs of <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> vertices and maximum degree significantly smaller than <span><math><mrow><mi>d</mi><mi>m</mi></mrow></math></span> is roughly <span><math><mfenced><mrow><mfrac><mrow><mi>ζ</mi><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mrow></mfenced></math></span>, for <span><math><mrow><mi>m</mi><mo>≪</mo><mi>ζ</mi><mi>n</mi></mrow></math></span> which is not too small. This generalises a result of Kohayakawa, Lee, Rödl, and Samotij on the number of independent sets in locally dense graphs. As an application, we slightly improve a result of Balogh, Chen, and Luo on the generalised Erdős–Rogers function for graphs with small extremal number.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"126 \",\"pages\":\"Article 104125\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000071\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果每个大小大于ζn的诱导子图的密度至少为d>;0,对于某些参数ζ,d>0,则n顶点图G是局部密集的。我们证明了具有m个顶点且最大程度明显小于dm的G的诱导子图的数量大致为ζnm,因为m≪ζn不算太小。这推广了Kohayakawa, Lee, Rödl和Samotij关于局部密集图中独立集数量的结果。作为一个应用,我们稍微改进了Balogh, Chen,和Luo对具有小极值数的图的广义Erdős-Rogers函数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting sparse induced subgraphs in locally dense graphs
An n-vertex graph G is locally dense if every induced subgraph of size larger than ζn has density at least d>0, for some parameters ζ,d>0. We show that the number of induced subgraphs of G with m vertices and maximum degree significantly smaller than dm is roughly ζnm, for mζn which is not too small. This generalises a result of Kohayakawa, Lee, Rödl, and Samotij on the number of independent sets in locally dense graphs. As an application, we slightly improve a result of Balogh, Chen, and Luo on the generalised Erdős–Rogers function for graphs with small extremal number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信