高q连分数

IF 0.9 3区 数学 Q1 MATHEMATICS
Amanda Burcroff , Nicholas Ovenhouse , Ralf Schiffler , Sylvester W. Zhang
{"title":"高q连分数","authors":"Amanda Burcroff ,&nbsp;Nicholas Ovenhouse ,&nbsp;Ralf Schiffler ,&nbsp;Sylvester W. Zhang","doi":"10.1016/j.ejc.2025.104244","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a <span><math><mi>q</mi></math></span>-analog of the higher continued fractions introduced by the last three authors in a previous work (together with Gregg Musiker), which are simultaneously a generalization of the <span><math><mi>q</mi></math></span>-rational numbers of Morier-Genoud and Ovsienko. They are defined as ratios of generating functions for <span><math><mi>P</mi></math></span>-partitions on certain posets. We give matrix formulas for computing them, which generalize previous results in the <span><math><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></math></span> case. We also show that certain properties enjoyed by the <span><math><mi>q</mi></math></span>-rationals are also satisfied by our higher versions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104244"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher q-continued fractions\",\"authors\":\"Amanda Burcroff ,&nbsp;Nicholas Ovenhouse ,&nbsp;Ralf Schiffler ,&nbsp;Sylvester W. Zhang\",\"doi\":\"10.1016/j.ejc.2025.104244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a <span><math><mi>q</mi></math></span>-analog of the higher continued fractions introduced by the last three authors in a previous work (together with Gregg Musiker), which are simultaneously a generalization of the <span><math><mi>q</mi></math></span>-rational numbers of Morier-Genoud and Ovsienko. They are defined as ratios of generating functions for <span><math><mi>P</mi></math></span>-partitions on certain posets. We give matrix formulas for computing them, which generalize previous results in the <span><math><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></math></span> case. We also show that certain properties enjoyed by the <span><math><mi>q</mi></math></span>-rationals are also satisfied by our higher versions.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104244\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001337\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001337","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了由最后三位作者(与Gregg Musiker一起)在之前的工作中引入的高连分数的q-类比,它同时是Morier-Genoud和Ovsienko的q-有序数的推广。它们被定义为特定偏置集上p分区生成函数的比率。我们给出了计算它们的矩阵公式,推广了前人在q=1情况下的结果。我们还证明了q-有理所具有的某些性质也被更高的版本所满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher q-continued fractions
We introduce a q-analog of the higher continued fractions introduced by the last three authors in a previous work (together with Gregg Musiker), which are simultaneously a generalization of the q-rational numbers of Morier-Genoud and Ovsienko. They are defined as ratios of generating functions for P-partitions on certain posets. We give matrix formulas for computing them, which generalize previous results in the q=1 case. We also show that certain properties enjoyed by the q-rationals are also satisfied by our higher versions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信