A counterexample to the Ross–Yong conjecture for Grothendieck polynomials

IF 0.9 3区 数学 Q1 MATHEMATICS
Colleen Robichaux
{"title":"A counterexample to the Ross–Yong conjecture for Grothendieck polynomials","authors":"Colleen Robichaux","doi":"10.1016/j.ejc.2025.104241","DOIUrl":null,"url":null,"abstract":"<div><div>We give a minimal counterexample for a conjecture of Ross and Yong (2015) which proposes a K-Kohnert rule for Grothendieck polynomials. We conjecture a revised version of this rule. We then prove both rules hold in the 321-avoiding case.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104241"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001301","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a minimal counterexample for a conjecture of Ross and Yong (2015) which proposes a K-Kohnert rule for Grothendieck polynomials. We conjecture a revised version of this rule. We then prove both rules hold in the 321-avoiding case.
Grothendieck多项式的Ross-Yong猜想的一个反例
我们给出了Ross和Yong(2015)猜想的最小反例,该猜想提出了格罗滕迪克多项式的K-Kohnert规则。我们推测这条规则的修订版本。然后,我们证明了这两个规则在321避免情况下都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信