{"title":"A counterexample to the Ross–Yong conjecture for Grothendieck polynomials","authors":"Colleen Robichaux","doi":"10.1016/j.ejc.2025.104241","DOIUrl":null,"url":null,"abstract":"<div><div>We give a minimal counterexample for a conjecture of Ross and Yong (2015) which proposes a K-Kohnert rule for Grothendieck polynomials. We conjecture a revised version of this rule. We then prove both rules hold in the 321-avoiding case.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104241"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001301","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give a minimal counterexample for a conjecture of Ross and Yong (2015) which proposes a K-Kohnert rule for Grothendieck polynomials. We conjecture a revised version of this rule. We then prove both rules hold in the 321-avoiding case.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.