对称群和限制标准杨氏表的表示维数的多项式表达式

IF 0.9 3区 数学 Q1 MATHEMATICS
Avichai Cohen, Shaul Zemel
{"title":"对称群和限制标准杨氏表的表示维数的多项式表达式","authors":"Avichai Cohen,&nbsp;Shaul Zemel","doi":"10.1016/j.ejc.2025.104242","DOIUrl":null,"url":null,"abstract":"<div><div>Given a partition <span><math><mi>λ</mi></math></span> of a number <span><math><mi>k</mi></math></span>, it is known that by adding a long line of length <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span>, the dimension of the associated representation of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an integer-valued polynomial of degree <span><math><mi>k</mi></math></span> in <span><math><mi>n</mi></math></span>. We show that its expansion in the binomial basis is bounded by the length of <span><math><mi>λ</mi></math></span>, and that the resulting coefficient of index <span><math><mi>h</mi></math></span>, with alternating signs, counts the standard Young tableaux of shape <span><math><mi>λ</mi></math></span> in which a given collection of consecutive <span><math><mi>h</mi></math></span> numbers lie in increasing rows. We also construct bijections in order to demonstrate explicitly that this number is indeed independent of the set of consecutive <span><math><mi>h</mi></math></span> numbers used.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104242"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial expressions for the dimensions of the representations of symmetric groups and restricted standard Young tableaux\",\"authors\":\"Avichai Cohen,&nbsp;Shaul Zemel\",\"doi\":\"10.1016/j.ejc.2025.104242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a partition <span><math><mi>λ</mi></math></span> of a number <span><math><mi>k</mi></math></span>, it is known that by adding a long line of length <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span>, the dimension of the associated representation of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an integer-valued polynomial of degree <span><math><mi>k</mi></math></span> in <span><math><mi>n</mi></math></span>. We show that its expansion in the binomial basis is bounded by the length of <span><math><mi>λ</mi></math></span>, and that the resulting coefficient of index <span><math><mi>h</mi></math></span>, with alternating signs, counts the standard Young tableaux of shape <span><math><mi>λ</mi></math></span> in which a given collection of consecutive <span><math><mi>h</mi></math></span> numbers lie in increasing rows. We also construct bijections in order to demonstrate explicitly that this number is indeed independent of the set of consecutive <span><math><mi>h</mi></math></span> numbers used.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104242\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001313\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001313","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个分区数k的λ,众所周知,通过添加一长串长度n−k, Sn的维度关联的表示是一个整数值k次多项式在n。我们证明其在二项式的扩张基础由λ的长度有限,由此产生的系数指数h,交变信号,计算标准的年轻的舞台造型的形状λ给定集合的连续h数量在增加行。为了明确地证明这个数确实独立于所使用的连续h数的集合,我们还构造了双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial expressions for the dimensions of the representations of symmetric groups and restricted standard Young tableaux
Given a partition λ of a number k, it is known that by adding a long line of length nk, the dimension of the associated representation of Sn is an integer-valued polynomial of degree k in n. We show that its expansion in the binomial basis is bounded by the length of λ, and that the resulting coefficient of index h, with alternating signs, counts the standard Young tableaux of shape λ in which a given collection of consecutive h numbers lie in increasing rows. We also construct bijections in order to demonstrate explicitly that this number is indeed independent of the set of consecutive h numbers used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信