{"title":"对称群和限制标准杨氏表的表示维数的多项式表达式","authors":"Avichai Cohen, Shaul Zemel","doi":"10.1016/j.ejc.2025.104242","DOIUrl":null,"url":null,"abstract":"<div><div>Given a partition <span><math><mi>λ</mi></math></span> of a number <span><math><mi>k</mi></math></span>, it is known that by adding a long line of length <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span>, the dimension of the associated representation of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an integer-valued polynomial of degree <span><math><mi>k</mi></math></span> in <span><math><mi>n</mi></math></span>. We show that its expansion in the binomial basis is bounded by the length of <span><math><mi>λ</mi></math></span>, and that the resulting coefficient of index <span><math><mi>h</mi></math></span>, with alternating signs, counts the standard Young tableaux of shape <span><math><mi>λ</mi></math></span> in which a given collection of consecutive <span><math><mi>h</mi></math></span> numbers lie in increasing rows. We also construct bijections in order to demonstrate explicitly that this number is indeed independent of the set of consecutive <span><math><mi>h</mi></math></span> numbers used.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104242"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial expressions for the dimensions of the representations of symmetric groups and restricted standard Young tableaux\",\"authors\":\"Avichai Cohen, Shaul Zemel\",\"doi\":\"10.1016/j.ejc.2025.104242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a partition <span><math><mi>λ</mi></math></span> of a number <span><math><mi>k</mi></math></span>, it is known that by adding a long line of length <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span>, the dimension of the associated representation of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an integer-valued polynomial of degree <span><math><mi>k</mi></math></span> in <span><math><mi>n</mi></math></span>. We show that its expansion in the binomial basis is bounded by the length of <span><math><mi>λ</mi></math></span>, and that the resulting coefficient of index <span><math><mi>h</mi></math></span>, with alternating signs, counts the standard Young tableaux of shape <span><math><mi>λ</mi></math></span> in which a given collection of consecutive <span><math><mi>h</mi></math></span> numbers lie in increasing rows. We also construct bijections in order to demonstrate explicitly that this number is indeed independent of the set of consecutive <span><math><mi>h</mi></math></span> numbers used.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104242\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001313\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001313","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Polynomial expressions for the dimensions of the representations of symmetric groups and restricted standard Young tableaux
Given a partition of a number , it is known that by adding a long line of length , the dimension of the associated representation of is an integer-valued polynomial of degree in . We show that its expansion in the binomial basis is bounded by the length of , and that the resulting coefficient of index , with alternating signs, counts the standard Young tableaux of shape in which a given collection of consecutive numbers lie in increasing rows. We also construct bijections in order to demonstrate explicitly that this number is indeed independent of the set of consecutive numbers used.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.