关于相交k图的c分集

IF 0.9 3区 数学 Q1 MATHEMATICS
Peter Frankl , Jian Wang
{"title":"关于相交k图的c分集","authors":"Peter Frankl ,&nbsp;Jian Wang","doi":"10.1016/j.ejc.2025.104199","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>F</mi><mo>⊂</mo><mfenced><mrow><mfrac><mrow><mi>X</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> be a family consisting of <span><math><mi>k</mi></math></span>-subsets of the <span><math><mi>n</mi></math></span>-set <span><math><mi>X</mi></math></span>. Suppose that <span><math><mi>F</mi></math></span> is intersecting, i.e., <span><math><mrow><mi>F</mi><mo>∩</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≠</mo><mo>0̸</mo></mrow></math></span> for all <span><math><mrow><mi>F</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi></mrow></math></span>. Let <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> be the maximum degree of <span><math><mi>F</mi></math></span>. For a constant <span><math><mrow><mi>C</mi><mo>≥</mo><mn>1</mn></mrow></math></span> the <span><math><mi>C</mi></math></span><em>-diversity</em> <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is defined as <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>−</mo><mi>C</mi><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, which was introduced by Magnan, Palmer and Wood recently. Define <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub><mo>=</mo><mfenced><mrow><mi>F</mi><mo>∈</mo><mfenced><mrow><mfrac><mrow><mi>X</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced><mo>:</mo><mrow><mo>|</mo><mi>F</mi><mo>∩</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow><mo>|</mo></mrow><mo>=</mo><mn>2</mn></mrow></mfenced></mrow></math></span>. It has <span><math><mi>C</mi></math></span>-diversity <span><math><mrow><mrow><mo>(</mo><mn>3</mn><mo>−</mo><mn>2</mn><mi>C</mi><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. The main result shows that for <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>C</mi><mo>&lt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mfrac><mrow><mn>42</mn></mrow><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>C</mi></mrow></mfrac><mi>k</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>≤</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> with equality if and only if <span><math><mi>F</mi></math></span> is isomorphic to <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub></math></span>. For the case of ordinary diversity <span><math><mrow><mo>(</mo><mi>C</mi><mo>=</mo><mn>1</mn><mo>)</mo></mrow></math></span> a strong stability is proven.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104199"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the C-diversity of intersecting k-graphs\",\"authors\":\"Peter Frankl ,&nbsp;Jian Wang\",\"doi\":\"10.1016/j.ejc.2025.104199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>F</mi><mo>⊂</mo><mfenced><mrow><mfrac><mrow><mi>X</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> be a family consisting of <span><math><mi>k</mi></math></span>-subsets of the <span><math><mi>n</mi></math></span>-set <span><math><mi>X</mi></math></span>. Suppose that <span><math><mi>F</mi></math></span> is intersecting, i.e., <span><math><mrow><mi>F</mi><mo>∩</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≠</mo><mo>0̸</mo></mrow></math></span> for all <span><math><mrow><mi>F</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi></mrow></math></span>. Let <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> be the maximum degree of <span><math><mi>F</mi></math></span>. For a constant <span><math><mrow><mi>C</mi><mo>≥</mo><mn>1</mn></mrow></math></span> the <span><math><mi>C</mi></math></span><em>-diversity</em> <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is defined as <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>−</mo><mi>C</mi><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, which was introduced by Magnan, Palmer and Wood recently. Define <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub><mo>=</mo><mfenced><mrow><mi>F</mi><mo>∈</mo><mfenced><mrow><mfrac><mrow><mi>X</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced><mo>:</mo><mrow><mo>|</mo><mi>F</mi><mo>∩</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow><mo>|</mo></mrow><mo>=</mo><mn>2</mn></mrow></mfenced></mrow></math></span>. It has <span><math><mi>C</mi></math></span>-diversity <span><math><mrow><mrow><mo>(</mo><mn>3</mn><mo>−</mo><mn>2</mn><mi>C</mi><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. The main result shows that for <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>C</mi><mo>&lt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mfrac><mrow><mn>42</mn></mrow><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>C</mi></mrow></mfrac><mi>k</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>≤</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> with equality if and only if <span><math><mi>F</mi></math></span> is isomorphic to <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub></math></span>. For the case of ordinary diversity <span><math><mrow><mo>(</mo><mi>C</mi><mo>=</mo><mn>1</mn><mo>)</mo></mrow></math></span> a strong stability is proven.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104199\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000861\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000861","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设F∧Xk是一个由n集合x的k个子集组成的族,设F相交,即对于所有F,F′∈F,F∩F′≠0′。设Δ(F)为F的最大度。对于常数C≥1,C分集γC(F)定义为|F|−CΔ(F),这是最近由Magnan, Palmer和Wood引入的。定义F123 = F∈Xk: | F∩{1,2,3}| = 2。它具有c -多样性(3−2C)n−3k−2。主要结果表明,对于1<;C<;32和n≥423−2Ck, γC(F)≤γC(F123)当且仅当F同构于F123时,二者相等。对于普通分集(C=1)的情况,证明了它的强稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the C-diversity of intersecting k-graphs
Let FXk be a family consisting of k-subsets of the n-set X. Suppose that F is intersecting, i.e., FF for all F,FF. Let Δ(F) be the maximum degree of F. For a constant C1 the C-diversity γC(F) is defined as |F|CΔ(F), which was introduced by Magnan, Palmer and Wood recently. Define F123=FXk:|F{1,2,3}|=2. It has C-diversity (32C)n3k2. The main result shows that for 1<C<32 and n4232Ck, γC(F)γC(F123) with equality if and only if F is isomorphic to F123. For the case of ordinary diversity (C=1) a strong stability is proven.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信