Vertex isoperimetry on signed graphs and spectra of non-bipartite Cayley and Cayley sum graphs

IF 0.9 3区 数学 Q1 MATHEMATICS
Chunyang Hu, Shiping Liu
{"title":"Vertex isoperimetry on signed graphs and spectra of non-bipartite Cayley and Cayley sum graphs","authors":"Chunyang Hu,&nbsp;Shiping Liu","doi":"10.1016/j.ejc.2025.104200","DOIUrl":null,"url":null,"abstract":"<div><div>For a non-bipartite finite Cayley graph, we show the non-trivial eigenvalues of its normalized adjacency matrix lie in the interval <span><math><mrow><mfenced><mrow><mo>−</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>c</mi><msubsup><mrow><mi>h</mi></mrow><mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><mi>d</mi></mrow></mfrac><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>C</mi><msubsup><mrow><mi>h</mi></mrow><mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></mfenced><mo>,</mo></mrow></math></span> for some absolute constants <span><math><mi>c</mi></math></span> and <span><math><mi>C</mi></math></span>, where <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub></math></span> stands for the outer vertex boundary isoperimetric constant. This improves upon recent obtained estimates aiming at a quantitative version of a result due to Breuillard, Green, Guralnick and Tao. We achieve this by extending the work of Bobkov, Houdré and Tetali on vertex isoperimetry to the setting of signed graphs. We further extend our interval estimate to the settings of vertex transitive graphs and Cayley sum graphs. As a byproduct, we answer positively open questions proposed recently by Moorman, Ralli and Tetali.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104200"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000873","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a non-bipartite finite Cayley graph, we show the non-trivial eigenvalues of its normalized adjacency matrix lie in the interval 1+chout2d,1Chout2d, for some absolute constants c and C, where hout stands for the outer vertex boundary isoperimetric constant. This improves upon recent obtained estimates aiming at a quantitative version of a result due to Breuillard, Green, Guralnick and Tao. We achieve this by extending the work of Bobkov, Houdré and Tetali on vertex isoperimetry to the setting of signed graphs. We further extend our interval estimate to the settings of vertex transitive graphs and Cayley sum graphs. As a byproduct, we answer positively open questions proposed recently by Moorman, Ralli and Tetali.
非二部Cayley图和Cayley和图的符号图和谱的顶点等距测量
对于非二部有限Cayley图,我们证明了它的归一化邻接矩阵的非平凡特征值存在于区间- 1+chout2d,1 - chout2d,对于某些绝对常数c和c,其中hout表示外顶点边界等周常数。这改进了最近获得的基于布鲁拉德、格林、古拉尔尼克和陶的定量结果的估计。我们通过将Bobkov, houdr和Tetali关于顶点等曲率的工作推广到有符号图的设置来实现这一点。我们进一步将区间估计推广到顶点传递图和Cayley和图的集合。作为副产品,我们回答了摩尔曼、拉利和泰塔利最近提出的积极开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信