Erdős-Rényi随机图G(n,m)中三角形计数的中等偏差:下尾

IF 0.9 3区 数学 Q1 MATHEMATICS
José D. Alvarado , Gabriel Dias do Couto , Simon Griffiths
{"title":"Erdős-Rényi随机图G(n,m)中三角形计数的中等偏差:下尾","authors":"José D. Alvarado ,&nbsp;Gabriel Dias do Couto ,&nbsp;Simon Griffiths","doi":"10.1016/j.ejc.2025.104189","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of triangles in a graph <span><math><mi>G</mi></math></span>. In Goldschmidt et al. (2020) and Neeman et al. (2023) (respectively) the following bounds were proved on the lower tail behaviour of triangle counts in the dense Erdős-Rényi random graphs <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>∼</mo><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>: <span><span><span><math><mrow><mi>P</mi><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>&lt;</mo><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo></mrow><mi>E</mi><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></mfenced></mrow></mfenced><mspace></mspace><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mfenced><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced></mrow></mfenced><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></mfenced><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><mn>1</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span> Neeman et al. (2023) also conjectured that the probability should be of the form <span><math><mrow><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mfenced><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced></mrow></mfenced></mrow></math></span> in the “missing interval” <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>. We prove this conjecture. As part of our proof we also prove that some random graph statistics, related to degrees and codegrees, are normally distributed with high probability.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"129 ","pages":"Article 104189"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate deviations of triangle counts in the Erdős-Rényi random graph G(n,m): The lower tail\",\"authors\":\"José D. Alvarado ,&nbsp;Gabriel Dias do Couto ,&nbsp;Simon Griffiths\",\"doi\":\"10.1016/j.ejc.2025.104189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of triangles in a graph <span><math><mi>G</mi></math></span>. In Goldschmidt et al. (2020) and Neeman et al. (2023) (respectively) the following bounds were proved on the lower tail behaviour of triangle counts in the dense Erdős-Rényi random graphs <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>∼</mo><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>: <span><span><span><math><mrow><mi>P</mi><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>&lt;</mo><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo></mrow><mi>E</mi><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></mfenced></mrow></mfenced><mspace></mspace><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mfenced><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced></mrow></mfenced><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></mfenced><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><mn>1</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span> Neeman et al. (2023) also conjectured that the probability should be of the form <span><math><mrow><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mfenced><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced></mrow></mfenced></mrow></math></span> in the “missing interval” <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>. We prove this conjecture. As part of our proof we also prove that some random graph statistics, related to degrees and codegrees, are normally distributed with high probability.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"129 \",\"pages\":\"Article 104189\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000745\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000745","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设N△(G)为图G中三角形的个数。Goldschmidt等人(2020)和Neeman等人(2023)分别证明了稠密Erdős-Rényi随机图G(m) ~ G(N,m)中三角形计数的下尾特性:PN△(G(m))<(1 - δ)EN△(G(m))=exp - Θδ2n3ifn - 3/2≪δ≪N - 1exp - Θ(δ2/3n2)ifn - 3/4≪δ≪1。Neeman等人(2023)还推测,在“缺失区间”n−1≪δ≪n−3/4中的概率形式应为exp - Θδ2n3。我们证明了这个猜想。作为证明的一部分,我们还证明了一些与度和余度相关的随机图统计量是高概率正态分布的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moderate deviations of triangle counts in the Erdős-Rényi random graph G(n,m): The lower tail
Let N(G) be the number of triangles in a graph G. In Goldschmidt et al. (2020) and Neeman et al. (2023) (respectively) the following bounds were proved on the lower tail behaviour of triangle counts in the dense Erdős-Rényi random graphs G(m)G(n,m): PN(G(m))<(1δ)EN(G(m))=expΘδ2n3ifn3/2δn1expΘ(δ2/3n2)ifn3/4δ1. Neeman et al. (2023) also conjectured that the probability should be of the form expΘδ2n3 in the “missing interval” n1δn3/4. We prove this conjecture. As part of our proof we also prove that some random graph statistics, related to degrees and codegrees, are normally distributed with high probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信