José D. Alvarado , Gabriel Dias do Couto , Simon Griffiths
{"title":"Erdős-Rényi随机图G(n,m)中三角形计数的中等偏差:下尾","authors":"José D. Alvarado , Gabriel Dias do Couto , Simon Griffiths","doi":"10.1016/j.ejc.2025.104189","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of triangles in a graph <span><math><mi>G</mi></math></span>. In Goldschmidt et al. (2020) and Neeman et al. (2023) (respectively) the following bounds were proved on the lower tail behaviour of triangle counts in the dense Erdős-Rényi random graphs <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>∼</mo><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>: <span><span><span><math><mrow><mi>P</mi><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo><</mo><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo></mrow><mi>E</mi><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></mfenced></mrow></mfenced><mspace></mspace><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mfenced><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced></mrow></mfenced><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></mfenced><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><mn>1</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span> Neeman et al. (2023) also conjectured that the probability should be of the form <span><math><mrow><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mfenced><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced></mrow></mfenced></mrow></math></span> in the “missing interval” <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>. We prove this conjecture. As part of our proof we also prove that some random graph statistics, related to degrees and codegrees, are normally distributed with high probability.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"129 ","pages":"Article 104189"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate deviations of triangle counts in the Erdős-Rényi random graph G(n,m): The lower tail\",\"authors\":\"José D. Alvarado , Gabriel Dias do Couto , Simon Griffiths\",\"doi\":\"10.1016/j.ejc.2025.104189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of triangles in a graph <span><math><mi>G</mi></math></span>. In Goldschmidt et al. (2020) and Neeman et al. (2023) (respectively) the following bounds were proved on the lower tail behaviour of triangle counts in the dense Erdős-Rényi random graphs <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>∼</mo><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>: <span><span><span><math><mrow><mi>P</mi><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo><</mo><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo></mrow><mi>E</mi><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mo>△</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></mfenced></mrow></mfenced><mspace></mspace><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mfenced><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced></mrow></mfenced><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></mfenced><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><mn>1</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span> Neeman et al. (2023) also conjectured that the probability should be of the form <span><math><mrow><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>Θ</mi><mfenced><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfenced></mrow></mfenced></mrow></math></span> in the “missing interval” <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>≪</mo><mi>δ</mi><mo>≪</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>. We prove this conjecture. As part of our proof we also prove that some random graph statistics, related to degrees and codegrees, are normally distributed with high probability.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"129 \",\"pages\":\"Article 104189\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000745\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000745","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Moderate deviations of triangle counts in the Erdős-Rényi random graph G(n,m): The lower tail
Let be the number of triangles in a graph . In Goldschmidt et al. (2020) and Neeman et al. (2023) (respectively) the following bounds were proved on the lower tail behaviour of triangle counts in the dense Erdős-Rényi random graphs : Neeman et al. (2023) also conjectured that the probability should be of the form in the “missing interval” . We prove this conjecture. As part of our proof we also prove that some random graph statistics, related to degrees and codegrees, are normally distributed with high probability.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.