10-list recoloring of planar graphs

IF 1 3区 数学 Q1 MATHEMATICS
Daniel W. Cranston
{"title":"10-list recoloring of planar graphs","authors":"Daniel W. Cranston","doi":"10.1016/j.ejc.2025.104190","DOIUrl":null,"url":null,"abstract":"<div><div>Fix a planar graph <span><math><mi>G</mi></math></span> and a list assignment <span><math><mi>L</mi></math></span> with <span><math><mrow><mo>|</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo><mo>=</mo><mn>10</mn></mrow></math></span> for all <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> be <span><math><mi>L</mi></math></span>-colorings of <span><math><mi>G</mi></math></span>. A recoloring sequence from <span><math><mi>α</mi></math></span> to <span><math><mi>β</mi></math></span> is a sequence of <span><math><mi>L</mi></math></span>-colorings, beginning with <span><math><mi>α</mi></math></span> and ending with <span><math><mi>β</mi></math></span>, such that each successive pair in the sequence differs in the color on a single vertex of <span><math><mi>G</mi></math></span>. We show that there exists a constant <span><math><mi>C</mi></math></span> such that for all choices of <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> there exists a recoloring sequence <span><math><mi>σ</mi></math></span> from <span><math><mi>α</mi></math></span> to <span><math><mi>β</mi></math></span> that recolors each vertex at most <span><math><mi>C</mi></math></span> times. In particular, <span><math><mi>σ</mi></math></span> has length at most <span><math><mrow><mi>C</mi><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span>. This confirms a conjecture of Dvořák and Feghali. For our proof, we introduce a new technique for quickly showing that many configurations are reducible. We believe this method may be of independent interest and will have application to other problems in this area.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104190"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000769","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fix a planar graph G and a list assignment L with |L(v)|=10 for all vV(G). Let α and β be L-colorings of G. A recoloring sequence from α to β is a sequence of L-colorings, beginning with α and ending with β, such that each successive pair in the sequence differs in the color on a single vertex of G. We show that there exists a constant C such that for all choices of α and β there exists a recoloring sequence σ from α to β that recolors each vertex at most C times. In particular, σ has length at most C|V(G)|. This confirms a conjecture of Dvořák and Feghali. For our proof, we introduce a new technique for quickly showing that many configurations are reducible. We believe this method may be of independent interest and will have application to other problems in this area.
平面图的10-list重着色
固定一个平面图G和一个列表赋值L,对于所有v∈v (G) |L(v)|=10。设α和β是g的l -着色。从α到β的重着色序列是一个l -着色序列,以α开始,以β结束,使得序列中每对连续的l -着色序列在g的单个顶点上的颜色不同。我们证明存在一个常数C,使得对于α和β的所有选择都存在一个从α到β的重着色序列σ,该序列最多对每个顶点进行C次重着色。特别地,σ的长度最多为C|V(G)|。这证实了Dvořák和Feghali的一个猜想。对于我们的证明,我们引入了一种新的技术来快速证明许多构型是可约的。我们相信这种方法可能是独立的兴趣,并将适用于这一领域的其他问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信