2边彩色二部图划分为单色圈

IF 0.9 3区 数学 Q1 MATHEMATICS
Fabrício Siqueira Benevides , Arthur Lima Quintino , Alexandre Talon
{"title":"2边彩色二部图划分为单色圈","authors":"Fabrício Siqueira Benevides ,&nbsp;Arthur Lima Quintino ,&nbsp;Alexandre Talon","doi":"10.1016/j.ejc.2025.104192","DOIUrl":null,"url":null,"abstract":"<div><div>Given an <span><math><mi>r</mi></math></span>-edge-colouring of the edges of a graph <span><math><mi>G</mi></math></span>, we say that it can be partitioned into <span><math><mi>p</mi></math></span> monochromatic cycles when there exists a set of <span><math><mi>p</mi></math></span> vertex-disjoint monochromatic cycles covering all the vertices of <span><math><mi>G</mi></math></span>. In the literature of this problem, an edge and a single vertex both count as a cycle.</div><div>We show that for every 2-colouring of the edges of a complete balanced bipartite graph, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, it can be partitioned into at most 4 monochromatic cycles. This type of question was first studied in 1970 for complete graphs and in 1983, by Gyárfás and Lehel, for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. In 2014, Pokrovskiy, showed for all <span><math><mi>n</mi></math></span> that given any 2-colouring of its edges, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> can be partitioned into at most three monochromatic paths. It turns out that finding monochromatic cycles instead of paths is a natural question that has also been raised for other graphs. In 2015, Schaudt and Stein showed that 14 cycles are sufficient for sufficiently large 2-edge-coloured <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104192"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioning 2-edge-coloured bipartite graphs into monochromatic cycles\",\"authors\":\"Fabrício Siqueira Benevides ,&nbsp;Arthur Lima Quintino ,&nbsp;Alexandre Talon\",\"doi\":\"10.1016/j.ejc.2025.104192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given an <span><math><mi>r</mi></math></span>-edge-colouring of the edges of a graph <span><math><mi>G</mi></math></span>, we say that it can be partitioned into <span><math><mi>p</mi></math></span> monochromatic cycles when there exists a set of <span><math><mi>p</mi></math></span> vertex-disjoint monochromatic cycles covering all the vertices of <span><math><mi>G</mi></math></span>. In the literature of this problem, an edge and a single vertex both count as a cycle.</div><div>We show that for every 2-colouring of the edges of a complete balanced bipartite graph, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, it can be partitioned into at most 4 monochromatic cycles. This type of question was first studied in 1970 for complete graphs and in 1983, by Gyárfás and Lehel, for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. In 2014, Pokrovskiy, showed for all <span><math><mi>n</mi></math></span> that given any 2-colouring of its edges, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> can be partitioned into at most three monochromatic paths. It turns out that finding monochromatic cycles instead of paths is a natural question that has also been raised for other graphs. In 2015, Schaudt and Stein showed that 14 cycles are sufficient for sufficiently large 2-edge-coloured <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104192\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000794\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000794","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定图G的边的r边着色,当存在p个顶点不相交的单色环的集合覆盖G的所有顶点时,我们说它可以划分为p个单色环。在这个问题的文献中,一条边和一个顶点都算作一个环。我们证明了对于完全平衡二部图Kn,n的每条边的2着色,它可以被划分为最多4个单色环。1970年,Gyárfás和Lehel首次对完全图研究了这类问题,1983年,他们研究了Kn,n。2014年,Pokrovskiy证明了对于所有n,给定其任意两种颜色的边,Kn,n可以划分为最多3条单色路径。事实证明,寻找单色环而不是路径是一个很自然的问题,这个问题在其他图中也被提出过。2015年,Schaudt和Stein证明,对于足够大的2边彩色Kn,n, 14个环是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitioning 2-edge-coloured bipartite graphs into monochromatic cycles
Given an r-edge-colouring of the edges of a graph G, we say that it can be partitioned into p monochromatic cycles when there exists a set of p vertex-disjoint monochromatic cycles covering all the vertices of G. In the literature of this problem, an edge and a single vertex both count as a cycle.
We show that for every 2-colouring of the edges of a complete balanced bipartite graph, Kn,n, it can be partitioned into at most 4 monochromatic cycles. This type of question was first studied in 1970 for complete graphs and in 1983, by Gyárfás and Lehel, for Kn,n. In 2014, Pokrovskiy, showed for all n that given any 2-colouring of its edges, Kn,n can be partitioned into at most three monochromatic paths. It turns out that finding monochromatic cycles instead of paths is a natural question that has also been raised for other graphs. In 2015, Schaudt and Stein showed that 14 cycles are sufficient for sufficiently large 2-edge-coloured Kn,n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信