Fabrício Siqueira Benevides , Arthur Lima Quintino , Alexandre Talon
{"title":"Partitioning 2-edge-coloured bipartite graphs into monochromatic cycles","authors":"Fabrício Siqueira Benevides , Arthur Lima Quintino , Alexandre Talon","doi":"10.1016/j.ejc.2025.104192","DOIUrl":null,"url":null,"abstract":"<div><div>Given an <span><math><mi>r</mi></math></span>-edge-colouring of the edges of a graph <span><math><mi>G</mi></math></span>, we say that it can be partitioned into <span><math><mi>p</mi></math></span> monochromatic cycles when there exists a set of <span><math><mi>p</mi></math></span> vertex-disjoint monochromatic cycles covering all the vertices of <span><math><mi>G</mi></math></span>. In the literature of this problem, an edge and a single vertex both count as a cycle.</div><div>We show that for every 2-colouring of the edges of a complete balanced bipartite graph, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, it can be partitioned into at most 4 monochromatic cycles. This type of question was first studied in 1970 for complete graphs and in 1983, by Gyárfás and Lehel, for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. In 2014, Pokrovskiy, showed for all <span><math><mi>n</mi></math></span> that given any 2-colouring of its edges, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> can be partitioned into at most three monochromatic paths. It turns out that finding monochromatic cycles instead of paths is a natural question that has also been raised for other graphs. In 2015, Schaudt and Stein showed that 14 cycles are sufficient for sufficiently large 2-edge-coloured <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104192"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000794","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given an -edge-colouring of the edges of a graph , we say that it can be partitioned into monochromatic cycles when there exists a set of vertex-disjoint monochromatic cycles covering all the vertices of . In the literature of this problem, an edge and a single vertex both count as a cycle.
We show that for every 2-colouring of the edges of a complete balanced bipartite graph, , it can be partitioned into at most 4 monochromatic cycles. This type of question was first studied in 1970 for complete graphs and in 1983, by Gyárfás and Lehel, for . In 2014, Pokrovskiy, showed for all that given any 2-colouring of its edges, can be partitioned into at most three monochromatic paths. It turns out that finding monochromatic cycles instead of paths is a natural question that has also been raised for other graphs. In 2015, Schaudt and Stein showed that 14 cycles are sufficient for sufficiently large 2-edge-coloured .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.