{"title":"Extensions and applications of the Tuza-Vestergaard theorem","authors":"Michael A. Henning , Anders Yeo","doi":"10.1016/j.ejc.2025.104201","DOIUrl":null,"url":null,"abstract":"<div><div>The transversal number <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> of a hypergraph <span><math><mi>H</mi></math></span> is the minimum number of vertices that intersect every edge of <span><math><mi>H</mi></math></span>. A 6-uniform hypergraph has all edges of size 6. On 10 November 2000 Tuza and Vestergaard (2002) conjectured that if <span><math><mi>H</mi></math></span> is a 3-regular 6-uniform hypergraph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. This conjecture was recently proven by the Henning and Yeo (2023) and is now called the Tuza-Vestergaard Theorem. In this paper we extend the Tuza-Vestergaard Theorem by relaxing the 3-regularity constraint and allowing bounded maximum degree 4. We present several applications of the Tuza-Vestergaard Theorem and its extension. We obtain best known upper bounds to date on the transversal number of a (general) 6-uniform hypergraph <span><math><mi>H</mi></math></span> of order <span><math><mi>n</mi></math></span> and size <span><math><mi>m</mi></math></span>. In particular, if <span><math><mi>H</mi></math></span> is a 4-regular 6-uniform hypergraph of order <span><math><mi>n</mi></math></span>, then we show that <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. The Tuza constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is defined by <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>=</mo><mo>sup</mo><mfrac><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>+</mo><mi>m</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span>, where the supremum is taken over the class of all 6-uniform hypergraphs <span><math><mi>H</mi></math></span>. Since 1990 the exact value of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> has yet to be determined. We show that <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>210</mn></mrow></mfrac></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></math></span> is conjectured to be the correct bound. Moreover we show that if <span><math><mi>G</mi></math></span> is a graph of order <span><math><mi>n</mi></math></span> with <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>6</mn></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>13</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>217</mn></mrow></mfrac></mrow></mfenced><mi>n</mi></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the total domination number of <span><math><mi>G</mi></math></span> and <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>13</mn></mrow></mfrac><mi>n</mi></mrow></math></span> is conjectured to be the correct bound. These bounds improve best known bounds to date.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104201"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The transversal number of a hypergraph is the minimum number of vertices that intersect every edge of . A 6-uniform hypergraph has all edges of size 6. On 10 November 2000 Tuza and Vestergaard (2002) conjectured that if is a 3-regular 6-uniform hypergraph of order , then . This conjecture was recently proven by the Henning and Yeo (2023) and is now called the Tuza-Vestergaard Theorem. In this paper we extend the Tuza-Vestergaard Theorem by relaxing the 3-regularity constraint and allowing bounded maximum degree 4. We present several applications of the Tuza-Vestergaard Theorem and its extension. We obtain best known upper bounds to date on the transversal number of a (general) 6-uniform hypergraph of order and size . In particular, if is a 4-regular 6-uniform hypergraph of order , then we show that . The Tuza constant is defined by , where the supremum is taken over the class of all 6-uniform hypergraphs . Since 1990 the exact value of has yet to be determined. We show that , where is conjectured to be the correct bound. Moreover we show that if is a graph of order with , then , where denotes the total domination number of and is conjectured to be the correct bound. These bounds improve best known bounds to date.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.