Extensions and applications of the Tuza-Vestergaard theorem

IF 0.9 3区 数学 Q1 MATHEMATICS
Michael A. Henning , Anders Yeo
{"title":"Extensions and applications of the Tuza-Vestergaard theorem","authors":"Michael A. Henning ,&nbsp;Anders Yeo","doi":"10.1016/j.ejc.2025.104201","DOIUrl":null,"url":null,"abstract":"<div><div>The transversal number <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> of a hypergraph <span><math><mi>H</mi></math></span> is the minimum number of vertices that intersect every edge of <span><math><mi>H</mi></math></span>. A 6-uniform hypergraph has all edges of size 6. On 10 November 2000 Tuza and Vestergaard (2002) conjectured that if <span><math><mi>H</mi></math></span> is a 3-regular 6-uniform hypergraph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. This conjecture was recently proven by the Henning and Yeo (2023) and is now called the Tuza-Vestergaard Theorem. In this paper we extend the Tuza-Vestergaard Theorem by relaxing the 3-regularity constraint and allowing bounded maximum degree 4. We present several applications of the Tuza-Vestergaard Theorem and its extension. We obtain best known upper bounds to date on the transversal number of a (general) 6-uniform hypergraph <span><math><mi>H</mi></math></span> of order <span><math><mi>n</mi></math></span> and size <span><math><mi>m</mi></math></span>. In particular, if <span><math><mi>H</mi></math></span> is a 4-regular 6-uniform hypergraph of order <span><math><mi>n</mi></math></span>, then we show that <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. The Tuza constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is defined by <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>=</mo><mo>sup</mo><mfrac><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>+</mo><mi>m</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span>, where the supremum is taken over the class of all 6-uniform hypergraphs <span><math><mi>H</mi></math></span>. Since 1990 the exact value of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> has yet to be determined. We show that <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>210</mn></mrow></mfrac></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></math></span> is conjectured to be the correct bound. Moreover we show that if <span><math><mi>G</mi></math></span> is a graph of order <span><math><mi>n</mi></math></span> with <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>6</mn></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>13</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>217</mn></mrow></mfrac></mrow></mfenced><mi>n</mi></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the total domination number of <span><math><mi>G</mi></math></span> and <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>13</mn></mrow></mfrac><mi>n</mi></mrow></math></span> is conjectured to be the correct bound. These bounds improve best known bounds to date.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104201"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The transversal number τ(H) of a hypergraph H is the minimum number of vertices that intersect every edge of H. A 6-uniform hypergraph has all edges of size 6. On 10 November 2000 Tuza and Vestergaard (2002) conjectured that if H is a 3-regular 6-uniform hypergraph of order n, then τ(H)14n. This conjecture was recently proven by the Henning and Yeo (2023) and is now called the Tuza-Vestergaard Theorem. In this paper we extend the Tuza-Vestergaard Theorem by relaxing the 3-regularity constraint and allowing bounded maximum degree 4. We present several applications of the Tuza-Vestergaard Theorem and its extension. We obtain best known upper bounds to date on the transversal number of a (general) 6-uniform hypergraph H of order n and size m. In particular, if H is a 4-regular 6-uniform hypergraph of order n, then we show that τ(H)27n. The Tuza constant c6 is defined by c6=supτ(H)n(H)+m(H), where the supremum is taken over the class of all 6-uniform hypergraphs H. Since 1990 the exact value of c6 has yet to be determined. We show that 16c616+1210, where c6=16 is conjectured to be the correct bound. Moreover we show that if G is a graph of order n with δ(G)6, then γt(G)413+6217n, where γt(G) denotes the total domination number of G and γt(G)413n is conjectured to be the correct bound. These bounds improve best known bounds to date.
tuza - vesterggaard定理的扩展与应用
超图H的截线数τ(H)是与H的每条边相交的最小顶点数。一个6-均匀超图的所有边的长度为6。2000年11月10日,Tuza和vesterggaard(2002)推测,如果H是一个n阶的3-正则6-一致超图,则τ(H)≤14n。这个猜想最近被Henning和Yeo(2023)证明,现在被称为tuza - vesterggaard定理。本文通过放宽3正则约束并允许有界最大次4,扩展了tuza - vesterggaard定理。给出了tuza - vesterggaard定理及其推广的几个应用。我们得到了大小为m的n阶(一般)6-均匀超图H的截数的已知上界。特别地,如果H是n阶的4-正则6-均匀超图,则我们证明了τ(H)≤27n。图萨常数c6定义为c6=supτ(H)n(H)+m(H),其中,所有6-一致超图H的类都取至极值。自1990年以来,c6的确切值尚未确定。我们证明了16≤c6≤16+1210,其中c6=16被推测为正确的界。进一步证明了如果G是n阶图且δ(G)≥6,则γt(G)≤413+6217n,其中γt(G)表示G的总支配数,推测γt(G)≤413n为正确界。这些边界改进了迄今为止最知名的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信