{"title":"多维排列中的模式","authors":"Shaoshi Chen , Hanqian Fang , Sergey Kitaev , Candice X.T. Zhang","doi":"10.1016/j.ejc.2025.104203","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a general framework that extends the theory of permutation patterns to higher dimensions and unifies several combinatorial objects studied in the literature. Our approach involves introducing the concept of a “level” for an element in a multi-dimensional permutation, which can be defined in multiple ways. We consider two natural definitions of a level, each establishing connections to other combinatorial sequences found in the Online Encyclopedia of Integer Sequences (OEIS).</div><div>Our framework allows us to offer combinatorial interpretations for various sequences found in the OEIS, many of which previously lacked such interpretations. As a notable example, we introduce an elegant combinatorial interpretation for the Springer numbers: they count weakly increasing 3-dimensional permutations under the definition of levels determined by maximal entries.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104203"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns in multi-dimensional permutations\",\"authors\":\"Shaoshi Chen , Hanqian Fang , Sergey Kitaev , Candice X.T. Zhang\",\"doi\":\"10.1016/j.ejc.2025.104203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a general framework that extends the theory of permutation patterns to higher dimensions and unifies several combinatorial objects studied in the literature. Our approach involves introducing the concept of a “level” for an element in a multi-dimensional permutation, which can be defined in multiple ways. We consider two natural definitions of a level, each establishing connections to other combinatorial sequences found in the Online Encyclopedia of Integer Sequences (OEIS).</div><div>Our framework allows us to offer combinatorial interpretations for various sequences found in the OEIS, many of which previously lacked such interpretations. As a notable example, we introduce an elegant combinatorial interpretation for the Springer numbers: they count weakly increasing 3-dimensional permutations under the definition of levels determined by maximal entries.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104203\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000915\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000915","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we propose a general framework that extends the theory of permutation patterns to higher dimensions and unifies several combinatorial objects studied in the literature. Our approach involves introducing the concept of a “level” for an element in a multi-dimensional permutation, which can be defined in multiple ways. We consider two natural definitions of a level, each establishing connections to other combinatorial sequences found in the Online Encyclopedia of Integer Sequences (OEIS).
Our framework allows us to offer combinatorial interpretations for various sequences found in the OEIS, many of which previously lacked such interpretations. As a notable example, we introduce an elegant combinatorial interpretation for the Springer numbers: they count weakly increasing 3-dimensional permutations under the definition of levels determined by maximal entries.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.