多维排列中的模式

IF 0.9 3区 数学 Q1 MATHEMATICS
Shaoshi Chen , Hanqian Fang , Sergey Kitaev , Candice X.T. Zhang
{"title":"多维排列中的模式","authors":"Shaoshi Chen ,&nbsp;Hanqian Fang ,&nbsp;Sergey Kitaev ,&nbsp;Candice X.T. Zhang","doi":"10.1016/j.ejc.2025.104203","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a general framework that extends the theory of permutation patterns to higher dimensions and unifies several combinatorial objects studied in the literature. Our approach involves introducing the concept of a “level” for an element in a multi-dimensional permutation, which can be defined in multiple ways. We consider two natural definitions of a level, each establishing connections to other combinatorial sequences found in the Online Encyclopedia of Integer Sequences (OEIS).</div><div>Our framework allows us to offer combinatorial interpretations for various sequences found in the OEIS, many of which previously lacked such interpretations. As a notable example, we introduce an elegant combinatorial interpretation for the Springer numbers: they count weakly increasing 3-dimensional permutations under the definition of levels determined by maximal entries.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104203"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns in multi-dimensional permutations\",\"authors\":\"Shaoshi Chen ,&nbsp;Hanqian Fang ,&nbsp;Sergey Kitaev ,&nbsp;Candice X.T. Zhang\",\"doi\":\"10.1016/j.ejc.2025.104203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a general framework that extends the theory of permutation patterns to higher dimensions and unifies several combinatorial objects studied in the literature. Our approach involves introducing the concept of a “level” for an element in a multi-dimensional permutation, which can be defined in multiple ways. We consider two natural definitions of a level, each establishing connections to other combinatorial sequences found in the Online Encyclopedia of Integer Sequences (OEIS).</div><div>Our framework allows us to offer combinatorial interpretations for various sequences found in the OEIS, many of which previously lacked such interpretations. As a notable example, we introduce an elegant combinatorial interpretation for the Springer numbers: they count weakly increasing 3-dimensional permutations under the definition of levels determined by maximal entries.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104203\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000915\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000915","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个将排列模式理论扩展到更高维度的通用框架,并将文献中研究的几种组合对象统一起来。我们的方法包括为多维排列中的元素引入“级别”的概念,它可以用多种方式定义。我们考虑级别的两个自然定义,每个定义都建立了与整数序列在线百科全书(OEIS)中发现的其他组合序列的联系。我们的框架允许我们为OEIS中发现的各种序列提供组合解释,其中许多序列以前缺乏这样的解释。作为一个值得注意的例子,我们为施普林格数引入了一种优雅的组合解释:它们在由最大条目决定的级别定义下计数弱增加的三维排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patterns in multi-dimensional permutations
In this paper, we propose a general framework that extends the theory of permutation patterns to higher dimensions and unifies several combinatorial objects studied in the literature. Our approach involves introducing the concept of a “level” for an element in a multi-dimensional permutation, which can be defined in multiple ways. We consider two natural definitions of a level, each establishing connections to other combinatorial sequences found in the Online Encyclopedia of Integer Sequences (OEIS).
Our framework allows us to offer combinatorial interpretations for various sequences found in the OEIS, many of which previously lacked such interpretations. As a notable example, we introduce an elegant combinatorial interpretation for the Springer numbers: they count weakly increasing 3-dimensional permutations under the definition of levels determined by maximal entries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信