Glasgow Mathematical Journal最新文献

筛选
英文 中文
Stereographic compactification and affine bi-Lipschitz homeomorphisms 立体压缩和仿射双唇隙同构
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-05-16 DOI: 10.1017/s001708952400017x
Vincent Grandjean, Roger Oliveira
{"title":"Stereographic compactification and affine bi-Lipschitz homeomorphisms","authors":"Vincent Grandjean, Roger Oliveira","doi":"10.1017/s001708952400017x","DOIUrl":"https://doi.org/10.1017/s001708952400017x","url":null,"abstract":"\u0000\t <jats:p>Let <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline1.png\"/>\u0000\t\t<jats:tex-math>\u0000$sigma _q ,:,{{mathbb{R}}^q} to{textbf{S}}^qsetminus N_q$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> be the inverse of the stereographic projection with center the north pole <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline2.png\"/>\u0000\t\t<jats:tex-math>\u0000$N_q$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula>. Let <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline3.png\"/>\u0000\t\t<jats:tex-math>\u0000$W_i$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> be a closed subset of <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline4.png\"/>\u0000\t\t<jats:tex-math>\u0000${mathbb{R}}^{q_i}$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula>, for <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline5.png\"/>\u0000\t\t<jats:tex-math>\u0000$i=1,2$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula>. Let <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline6.png\"/>\u0000\t\t<jats:tex-math>\u0000$Phi ,:,W_1 to W_2$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline7.png\"/>\u0000\t\t<jats:tex-math>\u0000$sigma _{q_2}circ Phi circ sigma _{q_1}^{-1}$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline8.png\"/>\u0000\t\t<jats:tex-math>\u0000$N_{q_1}$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> with value <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline9.png\"/>\u0000\t\t<jats:tex-math>\u0000$N_{q_2}$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> whenever <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140971318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Girth Alternative for subgroups of (1)、(2)、(3)和(4)
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-05-09 DOI: 10.1017/s0017089524000181
Azer Akhmedov
{"title":"Girth Alternative for subgroups of","authors":"Azer Akhmedov","doi":"10.1017/s0017089524000181","DOIUrl":"https://doi.org/10.1017/s0017089524000181","url":null,"abstract":"We prove the <jats:italic>Girth Alternative</jats:italic> for finitely generated subgroups of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000181_inline2.png\"/> <jats:tex-math> $PL_o(I)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also prove that a finitely generated subgroup of <jats:italic>Homeo</jats:italic><jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000181_inline3.png\"/> <jats:tex-math> $_{+}(I)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> which is sufficiently rich with hyperbolic-like elements has infinite girth.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thinness of some hypergeometric groups in 一些超几何群的稀疏性在
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-05-02 DOI: 10.1017/s0017089524000168
Sandip Singh, Shashank Vikram Singh
{"title":"Thinness of some hypergeometric groups in","authors":"Sandip Singh, Shashank Vikram Singh","doi":"10.1017/s0017089524000168","DOIUrl":"https://doi.org/10.1017/s0017089524000168","url":null,"abstract":"We show the thinness of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000168_inline2.png\"/> <jats:tex-math> $7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000168_inline3.png\"/> <jats:tex-math> $40$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hypergeometric groups having a maximally unipotent monodromy in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000168_inline4.png\"/> <jats:tex-math> $mathrm{Sp}(6)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simplicial volume of manifolds with amenable fundamental group at infinity 流形的简单体积,其基本群在无穷远处是可调和的
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-04-22 DOI: 10.1017/s0017089524000107
Giuseppe Bargagnati
{"title":"Simplicial volume of manifolds with amenable fundamental group at infinity","authors":"Giuseppe Bargagnati","doi":"10.1017/s0017089524000107","DOIUrl":"https://doi.org/10.1017/s0017089524000107","url":null,"abstract":"We show that for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline1.png\" /> <jats:tex-math> $n neq 1,4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the simplicial volume of an inward tame triangulable open <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline2.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-manifold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline3.png\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with amenable fundamental group at infinity at each end is finite; moreover, we show that if also <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline4.png\" /> <jats:tex-math> $pi _1(M)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is amenable, then the simplicial volume of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline5.png\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal subgroups of a family of iterated monodromy groups 迭代单色群族的最大子群
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-04-17 DOI: 10.1017/s0017089524000120
Karthika Rajeev, Anitha Thillaisundaram
{"title":"Maximal subgroups of a family of iterated monodromy groups","authors":"Karthika Rajeev, Anitha Thillaisundaram","doi":"10.1017/s0017089524000120","DOIUrl":"https://doi.org/10.1017/s0017089524000120","url":null,"abstract":"The Basilica group is a well-known 2-generated weakly branch, but not branch, group acting on the binary rooted tree. Recently, a more general form of the Basilica group has been investigated by Petschick and Rajeev, which is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000120_inline1.png\" /> <jats:tex-math> $s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generated weakly branch, but not branch, group that acts on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000120_inline2.png\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-adic tree, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000120_inline3.png\" /> <jats:tex-math> $s,mge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A larger family of groups, which contains these generalised Basilica groups, is the family of iterated monodromy groups. With the new developments by Francoeur, the study of the existence of maximal subgroups of infinite index has been extended from branch groups to weakly branch groups. Here we show that a subfamily of iterated monodromy groups, which more closely resemble the generalised Basilica groups, have maximal subgroups only of finite index.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted Blanchfield pairings and twisted signatures III: Applications 扭曲布兰奇菲尔德配对和扭曲签名 III:应用
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-04-15 DOI: 10.1017/s0017089524000077
Maciej Borodzik, Anthony Conway, Wojciech Politarczyk
{"title":"Twisted Blanchfield pairings and twisted signatures III: Applications","authors":"Maciej Borodzik, Anthony Conway, Wojciech Politarczyk","doi":"10.1017/s0017089524000077","DOIUrl":"https://doi.org/10.1017/s0017089524000077","url":null,"abstract":"This paper describes how to compute algorithmically certain twisted signature invariants of a knot <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000077_inline1.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> using twisted Blanchfield forms. An illustration of the algorithm is implemented on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000077_inline2.png\" /> <jats:tex-math> $(2,q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-torus knots. Additionally, using satellite formulas for these invariants, we also show how to obstruct the sliceness of certain iterated torus knots.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on quantum K-theory of root constructions 关于根构造的量子 K 理论的说明
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-04-12 DOI: 10.1017/s0017089524000089
Hsian-Hua Tseng
{"title":"A note on quantum K-theory of root constructions","authors":"Hsian-Hua Tseng","doi":"10.1017/s0017089524000089","DOIUrl":"https://doi.org/10.1017/s0017089524000089","url":null,"abstract":"We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000089_inline1.png\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> K-theoretic Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000089_inline2.png\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On almost quotient Yamabe solitons 论几乎商的山边孤子
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-04-11 DOI: 10.1017/s0017089524000119
Willian Tokura, Marcelo Barboza, Elismar Batista, Priscila Kai
{"title":"On almost quotient Yamabe solitons","authors":"Willian Tokura, Marcelo Barboza, Elismar Batista, Priscila Kai","doi":"10.1017/s0017089524000119","DOIUrl":"https://doi.org/10.1017/s0017089524000119","url":null,"abstract":"In this paper, we investigate the structure of certain solutions of the fully nonlinear Yamabe flow, which we call almost quotient Yamabe solitons as they extend quite naturally those already called quotient Yamabe solitons. We present sufficient conditions for a compact almost quotient Yamabe soliton to be either trivial or isometric with an Euclidean sphere. We also characterize noncompact almost gradient quotient Yamabe solitons satisfying certain conditions on both its Ricci tensor and potential function.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galois points and Cremona transformations 伽罗瓦点和克雷莫纳变换
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-04-11 DOI: 10.1017/s0017089524000090
Ahmed Abouelsaad
{"title":"Galois points and Cremona transformations","authors":"Ahmed Abouelsaad","doi":"10.1017/s0017089524000090","DOIUrl":"https://doi.org/10.1017/s0017089524000090","url":null,"abstract":"In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline1.png\" /> <jats:tex-math> $mathrm{Bir}(mathbb{P}^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that if the Galois group has order at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline2.png\" /> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, it always extends to a subgroup of the Jonquières group associated with the point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline3.png\" /> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Conversely, with a degree of at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline4.png\" /> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline5.png\" /> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triangular matrix categories over quasi-hereditary categories 准遗传范畴上的三角矩阵范畴
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-03-21 DOI: 10.1017/s0017089524000053
Rafael Francisco Ochoa De La Cruz, Martin Ortíz Morales, Valente Santiago Vargas
{"title":"Triangular matrix categories over quasi-hereditary categories","authors":"Rafael Francisco Ochoa De La Cruz, Martin Ortíz Morales, Valente Santiago Vargas","doi":"10.1017/s0017089524000053","DOIUrl":"https://doi.org/10.1017/s0017089524000053","url":null,"abstract":"In this paper, we prove that the lower triangular matrix category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline1.png\" /> <jats:tex-math> $Lambda =left [ begin{smallmatrix} mathcal{T}&amp;0 M&amp;mathcal{U} end{smallmatrix} right ]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline2.png\" /> <jats:tex-math> $mathcal{T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline3.png\" /> <jats:tex-math> $mathcal{U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline4.png\" /> <jats:tex-math> $textrm{Hom}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-finite, Krull–Schmidt <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline5.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-quasi-hereditary categories and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline6.png\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline7.png\" /> <jats:tex-math> $mathcal{U}otimes _K mathcal{T}^{op}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline8.png\" /> <jats:tex-math> $_Lambda Delta$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-filtered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline9.png\" /> <jats:tex-math> $Lambda$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信