Glasgow Mathematical Journal最新文献

筛选
英文 中文
Models and integral differentials of hyperelliptic curves 超椭圆曲线的模型和积分微分
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-03-18 DOI: 10.1017/s001708952400003x
Simone Muselli
{"title":"Models and integral differentials of hyperelliptic curves","authors":"Simone Muselli","doi":"10.1017/s001708952400003x","DOIUrl":"https://doi.org/10.1017/s001708952400003x","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline1.png\" /> <jats:tex-math> $C; : ;y^2=f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a hyperelliptic curve of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline2.png\" /> <jats:tex-math> $ggeq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, defined over a complete discretely valued field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline3.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with ring of integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline4.png\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under certain conditions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline5.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mild when residue characteristic is not <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline6.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we explicitly construct the minimal regular model with normal crossings <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline7.png\" /> <jats:tex-math> $mathcal{C}/O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline8.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the same setting we determine a basis of integral differentials of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline9.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline10.png\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-basis for the global sections of the relative dualising sheaf <jats:inline-formula> <jats:alternatives> <","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140155038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examples of hyperbolic spaces without the properties of quasi-ball or bounded eccentricity 不具有准球或有界偏心特性的双曲空间实例
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-03-11 DOI: 10.1017/s0017089524000065
Qizheng You, Jiawen Zhang
{"title":"Examples of hyperbolic spaces without the properties of quasi-ball or bounded eccentricity","authors":"Qizheng You, Jiawen Zhang","doi":"10.1017/s0017089524000065","DOIUrl":"https://doi.org/10.1017/s0017089524000065","url":null,"abstract":"<p>In this note, we present examples of non-quasi-geodesic metric spaces which are hyperbolic (i.e., satisfying Gromov’s <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308121158651-0633:S0017089524000065:S0017089524000065_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$4$</span></span></img></span></span>-point condition) while the intersection of any two metric balls therein does not either ‘look like’ a ball or has uniformly bounded eccentricity. This answers an open question posed by Chatterji and Niblo.</p>","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On twisted group ring isomorphism problem for p-groups 论 p 群的扭曲群环同构问题
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-02-16 DOI: 10.1017/s0017089524000041
Gurleen Kaur, Surinder Kaur, Pooja Singla
{"title":"On twisted group ring isomorphism problem for p-groups","authors":"Gurleen Kaur, Surinder Kaur, Pooja Singla","doi":"10.1017/s0017089524000041","DOIUrl":"https://doi.org/10.1017/s0017089524000041","url":null,"abstract":"In this article, we explore the problem of determining isomorphisms between the twisted complex group algebras of finite <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000041_inline1.png\" /> <jats:tex-math> $p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-groups. This problem bears similarity to the classical group algebra isomorphism problem and has been recently examined by Margolis-Schnabel. Our focus lies on a specific invariant, referred to as the generalized corank, which relates to the twisted complex group algebra isomorphism problem. We provide a solution for non-abelian <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000041_inline2.png\" /> <jats:tex-math> $p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-groups with generalized corank at most three.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139766048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abelian absolute Galois groups 阿贝尔绝对伽罗瓦群
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-02-02 DOI: 10.1017/s0017089524000028
Moshe Jarden
{"title":"Abelian absolute Galois groups","authors":"Moshe Jarden","doi":"10.1017/s0017089524000028","DOIUrl":"https://doi.org/10.1017/s0017089524000028","url":null,"abstract":"Generalizing a result of Wulf-Dieter Geyer in his thesis, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline1.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a finitely generated extension of transcendence degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline2.png\" /> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a global field and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline3.png\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a closed abelian subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline4.png\" /> <jats:tex-math> $textrm{Gal}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline5.png\" /> <jats:tex-math> ${mathrm{rank}}(A)le r+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline6.png\" /> <jats:tex-math> $mathrm{char}(K)=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline7.png\" /> <jats:tex-math> ${hat{mathbb{Z}}}^{r+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is isomorphic to a closed subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline8.png\" /> <jats:tex-math> $textrm{Gal}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139666722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kato’s main conjecture for potentially ordinary primes 加藤对潜在普通素数的主要猜想
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-01-26 DOI: 10.1017/s0017089524000016
Katharina Müller
{"title":"Kato’s main conjecture for potentially ordinary primes","authors":"Katharina Müller","doi":"10.1017/s0017089524000016","DOIUrl":"https://doi.org/10.1017/s0017089524000016","url":null,"abstract":"In this paper, we prove Kato’s main conjecture for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000016_inline1.png\" /> <jats:tex-math> $CM$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> modular forms for primes of potentially ordinary reduction under certain hypotheses on the modular form.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139582750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leopoldt-type theorems for non-abelian extensions of 的非阿贝尔扩展的利奥波德型定理
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-01-22 DOI: 10.1017/s0017089523000460
Fabio Ferri
{"title":"Leopoldt-type theorems for non-abelian extensions of","authors":"Fabio Ferri","doi":"10.1017/s0017089523000460","DOIUrl":"https://doi.org/10.1017/s0017089523000460","url":null,"abstract":"<p>We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K/mathbb{Q}$</span></span></img></span></span> with Galois group isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$A_5$</span></span></img></span></span>, and dihedral groups of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$2p^n$</span></span></img></span></span> for certain prime powers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p^n$</span></span></img></span></span>. In particular, when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K/mathbb{Q}$</span></span></img></span></span> is a Galois extension with Galois group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:2024012","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dehn functions of mapping tori of right-angled Artin groups 直角阿尔丁群映射环的 Dehn 函数
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-01-11 DOI: 10.1017/s0017089523000459
Kristen Pueschel, Timothy Riley
{"title":"Dehn functions of mapping tori of right-angled Artin groups","authors":"Kristen Pueschel, Timothy Riley","doi":"10.1017/s0017089523000459","DOIUrl":"https://doi.org/10.1017/s0017089523000459","url":null,"abstract":"<p>The algebraic mapping torus <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$M_{Phi }$</span></span></img></span></span> of a group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> with an automorphism <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$Phi$</span></span></img></span></span> is the HNN-extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> in which conjugation by the stable letter performs <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$Phi$</span></span></img></span></span>. We classify the Dehn functions of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$M_{Phi }$</span></span></img></span></span> in terms of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$Phi$</span></span></img></span></span> for a number of right-angled Artin groups (RAAGs) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span>, including all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>-generator RAAGs and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S001708","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classifying spaces for families of abelian subgroups of braid groups, RAAGs and graphs of abelian groups 辫状群无性子群族、RAAG 和无性群图的分类空间
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-01-11 DOI: 10.1017/s0017089523000496
Porfirio L. León Álvarez
{"title":"Classifying spaces for families of abelian subgroups of braid groups, RAAGs and graphs of abelian groups","authors":"Porfirio L. León Álvarez","doi":"10.1017/s0017089523000496","DOIUrl":"https://doi.org/10.1017/s0017089523000496","url":null,"abstract":"<p>Given a group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> and an integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$ngeq 0$</span></span></img></span></span>, we consider the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal F}_n$</span></span></img></span></span> of all virtually abelian subgroups of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{rank}$</span></span></img></span></span> at most <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>. In this article, we prove that for each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$nge 2$</span></span></img></span></span> the Bredon cohomology, with respect to the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal F}_n$</span></span></img></span></span>, of a free abelian group with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{rank}$</span></span></img></span></span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S001708952300049","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a variant of the product replacement algorithm 关于乘积替换算法的变体
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-01-09 DOI: 10.1017/s0017089523000435
C.R. Leedham-Green
{"title":"On a variant of the product replacement algorithm","authors":"C.R. Leedham-Green","doi":"10.1017/s0017089523000435","DOIUrl":"https://doi.org/10.1017/s0017089523000435","url":null,"abstract":"We discuss a variant, named ‘Rattle’, of the product replacement algorithm. Rattle is a Markov chain, that returns a random element of a black box group. The limiting distribution of the element returned is the uniform distribution. We prove that, if the generating sequence is long enough, the probability distribution of the element returned converges unexpectedly quickly to the uniform distribution.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139410155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GMJ volume 66 issue 1 Cover and Back matter 全球监测报告》第 66 卷第 1 期封面和封底
IF 0.5 4区 数学
Glasgow Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1017/s0017089523000484
{"title":"GMJ volume 66 issue 1 Cover and Back matter","authors":"","doi":"10.1017/s0017089523000484","DOIUrl":"https://doi.org/10.1017/s0017089523000484","url":null,"abstract":"","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140516717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信