{"title":"Models and integral differentials of hyperelliptic curves","authors":"Simone Muselli","doi":"10.1017/s001708952400003x","DOIUrl":"https://doi.org/10.1017/s001708952400003x","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline1.png\" /> <jats:tex-math> $C; : ;y^2=f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a hyperelliptic curve of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline2.png\" /> <jats:tex-math> $ggeq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, defined over a complete discretely valued field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline3.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with ring of integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline4.png\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under certain conditions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline5.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mild when residue characteristic is not <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline6.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we explicitly construct the minimal regular model with normal crossings <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline7.png\" /> <jats:tex-math> $mathcal{C}/O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline8.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the same setting we determine a basis of integral differentials of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline9.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline10.png\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-basis for the global sections of the relative dualising sheaf <jats:inline-formula> <jats:alternatives> <","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140155038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Examples of hyperbolic spaces without the properties of quasi-ball or bounded eccentricity","authors":"Qizheng You, Jiawen Zhang","doi":"10.1017/s0017089524000065","DOIUrl":"https://doi.org/10.1017/s0017089524000065","url":null,"abstract":"<p>In this note, we present examples of non-quasi-geodesic metric spaces which are hyperbolic (i.e., satisfying Gromov’s <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308121158651-0633:S0017089524000065:S0017089524000065_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$4$</span></span></img></span></span>-point condition) while the intersection of any two metric balls therein does not either ‘look like’ a ball or has uniformly bounded eccentricity. This answers an open question posed by Chatterji and Niblo.</p>","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On twisted group ring isomorphism problem for p-groups","authors":"Gurleen Kaur, Surinder Kaur, Pooja Singla","doi":"10.1017/s0017089524000041","DOIUrl":"https://doi.org/10.1017/s0017089524000041","url":null,"abstract":"In this article, we explore the problem of determining isomorphisms between the twisted complex group algebras of finite <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000041_inline1.png\" /> <jats:tex-math> $p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-groups. This problem bears similarity to the classical group algebra isomorphism problem and has been recently examined by Margolis-Schnabel. Our focus lies on a specific invariant, referred to as the generalized corank, which relates to the twisted complex group algebra isomorphism problem. We provide a solution for non-abelian <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000041_inline2.png\" /> <jats:tex-math> $p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-groups with generalized corank at most three.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139766048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kato’s main conjecture for potentially ordinary primes","authors":"Katharina Müller","doi":"10.1017/s0017089524000016","DOIUrl":"https://doi.org/10.1017/s0017089524000016","url":null,"abstract":"In this paper, we prove Kato’s main conjecture for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000016_inline1.png\" /> <jats:tex-math> $CM$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> modular forms for primes of potentially ordinary reduction under certain hypotheses on the modular form.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139582750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leopoldt-type theorems for non-abelian extensions of","authors":"Fabio Ferri","doi":"10.1017/s0017089523000460","DOIUrl":"https://doi.org/10.1017/s0017089523000460","url":null,"abstract":"<p>We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K/mathbb{Q}$</span></span></img></span></span> with Galois group isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$A_5$</span></span></img></span></span>, and dihedral groups of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$2p^n$</span></span></img></span></span> for certain prime powers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p^n$</span></span></img></span></span>. In particular, when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K/mathbb{Q}$</span></span></img></span></span> is a Galois extension with Galois group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:2024012","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dehn functions of mapping tori of right-angled Artin groups","authors":"Kristen Pueschel, Timothy Riley","doi":"10.1017/s0017089523000459","DOIUrl":"https://doi.org/10.1017/s0017089523000459","url":null,"abstract":"<p>The algebraic mapping torus <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$M_{Phi }$</span></span></img></span></span> of a group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> with an automorphism <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$Phi$</span></span></img></span></span> is the HNN-extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> in which conjugation by the stable letter performs <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$Phi$</span></span></img></span></span>. We classify the Dehn functions of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$M_{Phi }$</span></span></img></span></span> in terms of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$Phi$</span></span></img></span></span> for a number of right-angled Artin groups (RAAGs) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span>, including all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>-generator RAAGs and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S001708","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classifying spaces for families of abelian subgroups of braid groups, RAAGs and graphs of abelian groups","authors":"Porfirio L. León Álvarez","doi":"10.1017/s0017089523000496","DOIUrl":"https://doi.org/10.1017/s0017089523000496","url":null,"abstract":"<p>Given a group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> and an integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$ngeq 0$</span></span></img></span></span>, we consider the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal F}_n$</span></span></img></span></span> of all virtually abelian subgroups of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{rank}$</span></span></img></span></span> at most <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>. In this article, we prove that for each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$nge 2$</span></span></img></span></span> the Bredon cohomology, with respect to the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal F}_n$</span></span></img></span></span>, of a free abelian group with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{rank}$</span></span></img></span></span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S001708952300049","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a variant of the product replacement algorithm","authors":"C.R. Leedham-Green","doi":"10.1017/s0017089523000435","DOIUrl":"https://doi.org/10.1017/s0017089523000435","url":null,"abstract":"We discuss a variant, named ‘Rattle’, of the product replacement algorithm. Rattle is a Markov chain, that returns a random element of a black box group. The limiting distribution of the element returned is the uniform distribution. We prove that, if the generating sequence is long enough, the probability distribution of the element returned converges unexpectedly quickly to the uniform distribution.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139410155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}