{"title":"Leopoldt-type theorems for non-abelian extensions of","authors":"Fabio Ferri","doi":"10.1017/s0017089523000460","DOIUrl":null,"url":null,"abstract":"<p>We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K/\\mathbb{Q}$</span></span></img></span></span> with Galois group isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$A_5$</span></span></img></span></span>, and dihedral groups of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$2p^n$</span></span></img></span></span> for certain prime powers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p^n$</span></span></img></span></span>. In particular, when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K/\\mathbb{Q}$</span></span></img></span></span> is a Galois extension with Galois group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$S_4$</span></span></img></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$A_5$</span></span></img></span></span>, we give necessary and sufficient conditions for the ring of integers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal{O}_{K}$</span></span></img></span></span> to be free over its associated order in the rational group algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{Q}[G]$</span></span></img></span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.