{"title":"Leopoldt-type theorems for non-abelian extensions of","authors":"Fabio Ferri","doi":"10.1017/s0017089523000460","DOIUrl":null,"url":null,"abstract":"<p>We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K/\\mathbb{Q}$</span></span></img></span></span> with Galois group isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$A_5$</span></span></img></span></span>, and dihedral groups of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$2p^n$</span></span></img></span></span> for certain prime powers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p^n$</span></span></img></span></span>. In particular, when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K/\\mathbb{Q}$</span></span></img></span></span> is a Galois extension with Galois group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$S_4$</span></span></img></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$A_5$</span></span></img></span></span>, we give necessary and sufficient conditions for the ring of integers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal{O}_{K}$</span></span></img></span></span> to be free over its associated order in the rational group algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{Q}[G]$</span></span></img></span></span>.</p>","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"38 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000460","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
期刊介绍:
Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics.
The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.