Leopoldt-type theorems for non-abelian extensions of

Pub Date : 2024-01-22 DOI:10.1017/s0017089523000460
Fabio Ferri
{"title":"Leopoldt-type theorems for non-abelian extensions of","authors":"Fabio Ferri","doi":"10.1017/s0017089523000460","DOIUrl":null,"url":null,"abstract":"<p>We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K/\\mathbb{Q}$</span></span></img></span></span> with Galois group isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$A_5$</span></span></img></span></span>, and dihedral groups of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$2p^n$</span></span></img></span></span> for certain prime powers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p^n$</span></span></img></span></span>. In particular, when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K/\\mathbb{Q}$</span></span></img></span></span> is a Galois extension with Galois group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$A_4$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$S_4$</span></span></img></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$A_5$</span></span></img></span></span>, we give necessary and sufficient conditions for the ring of integers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal{O}_{K}$</span></span></img></span></span> to be free over its associated order in the rational group algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240121224918357-0465:S0017089523000460:S0017089523000460_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{Q}[G]$</span></span></img></span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions Abstract Image$K/\mathbb{Q}$ with Galois group isomorphic to Abstract Image$A_4$, Abstract Image$S_4$, Abstract Image$A_5$, and dihedral groups of order Abstract Image$2p^n$ for certain prime powers Abstract Image$p^n$. In particular, when Abstract Image$K/\mathbb{Q}$ is a Galois extension with Galois group Abstract Image$G$ isomorphic to Abstract Image$A_4$, Abstract Image$S_4$ or Abstract Image$A_5$, we give necessary and sufficient conditions for the ring of integers Abstract Image$\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra Abstract Image$\mathbb{Q}[G]$.

分享
查看原文
的非阿贝尔扩展的利奥波德型定理
我们证明了关于具有伽罗伊群 $G$同构于 $A_4$、$S_4$、$A_5$ 和特定素数幂 $p^n$ 的阶为 $2p^n$ 的二面群的野性斜切非阿贝尔扩展 $K/\mathbb{Q}$ 的可加伽罗伊模块结构的新结果。特别是,当 $K/\mathbb{Q}$ 是伽罗瓦扩展,其伽罗瓦群 $G$ 与 $A_4$、$S_4$ 或 $A_5$ 同构时,我们给出了整数环 $\mathcal{O}_{K}$ 在有理群代数 $\mathbb{Q}[G]$ 中对其相关阶自由的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信