{"title":"直角阿尔丁群映射环的 Dehn 函数","authors":"Kristen Pueschel, Timothy Riley","doi":"10.1017/s0017089523000459","DOIUrl":null,"url":null,"abstract":"<p>The algebraic mapping torus <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$M_{\\Phi }$</span></span></img></span></span> of a group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> with an automorphism <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Phi$</span></span></img></span></span> is the HNN-extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> in which conjugation by the stable letter performs <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\Phi$</span></span></img></span></span>. We classify the Dehn functions of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$M_{\\Phi }$</span></span></img></span></span> in terms of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\Phi$</span></span></img></span></span> for a number of right-angled Artin groups (RAAGs) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span>, including all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>-generator RAAGs and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$F_k \\times F_l$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$k,l \\geq 2$</span></span></span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dehn functions of mapping tori of right-angled Artin groups\",\"authors\":\"Kristen Pueschel, Timothy Riley\",\"doi\":\"10.1017/s0017089523000459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The algebraic mapping torus <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M_{\\\\Phi }$</span></span></img></span></span> of a group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> with an automorphism <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Phi$</span></span></img></span></span> is the HNN-extension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> in which conjugation by the stable letter performs <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Phi$</span></span></img></span></span>. We classify the Dehn functions of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M_{\\\\Phi }$</span></span></img></span></span> in terms of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Phi$</span></span></img></span></span> for a number of right-angled Artin groups (RAAGs) <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span>, including all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$3$</span></span></img></span></span>-generator RAAGs and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F_k \\\\times F_l$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110051631416-0480:S0017089523000459:S0017089523000459_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k,l \\\\geq 2$</span></span></span></span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089523000459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dehn functions of mapping tori of right-angled Artin groups
The algebraic mapping torus $M_{\Phi }$ of a group $G$ with an automorphism $\Phi$ is the HNN-extension of $G$ in which conjugation by the stable letter performs $\Phi$. We classify the Dehn functions of $M_{\Phi }$ in terms of $\Phi$ for a number of right-angled Artin groups (RAAGs) $G$, including all $3$-generator RAAGs and $F_k \times F_l$ for all $k,l \geq 2$.