{"title":"连接词","authors":"Donald M. Davis, W. Stephen Wilson","doi":"10.1017/s0017089523000423","DOIUrl":null,"url":null,"abstract":"<p>We compute <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$ku^*\\left(K\\!\\left({\\mathbb{Z}}_p,2\\right)\\right)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$ku_*\\left(K\\!\\left({\\mathbb{Z}}_p,2\\right)\\right)$</span></span></img></span></span>, the connective <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$KU$</span></span></img></span></span>-cohomology and connective <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$KU$</span></span></img></span></span>-homology groups of the mod-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> Eilenberg–MacLane space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K\\!\\left({\\mathbb{Z}}_p,2\\right)$</span></span></img></span></span>, using the Adams spectral sequence. We obtain a striking interaction between <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$h_0$</span></span></img></span></span>-extensions and exotic extensions. The mod-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> connective <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$KU$</span></span></img></span></span>-cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The connective\",\"authors\":\"Donald M. Davis, W. Stephen Wilson\",\"doi\":\"10.1017/s0017089523000423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We compute <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ku^*\\\\left(K\\\\!\\\\left({\\\\mathbb{Z}}_p,2\\\\right)\\\\right)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ku_*\\\\left(K\\\\!\\\\left({\\\\mathbb{Z}}_p,2\\\\right)\\\\right)$</span></span></img></span></span>, the connective <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$KU$</span></span></img></span></span>-cohomology and connective <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$KU$</span></span></img></span></span>-homology groups of the mod-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span> Eilenberg–MacLane space <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K\\\\!\\\\left({\\\\mathbb{Z}}_p,2\\\\right)$</span></span></img></span></span>, using the Adams spectral sequence. We obtain a striking interaction between <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$h_0$</span></span></img></span></span>-extensions and exotic extensions. The mod-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span> connective <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$KU$</span></span></img></span></span>-cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089523000423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We compute $ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ and $ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$, the connective $KU$-cohomology and connective $KU$-homology groups of the mod-$p$ Eilenberg–MacLane space $K\!\left({\mathbb{Z}}_p,2\right)$, using the Adams spectral sequence. We obtain a striking interaction between $h_0$-extensions and exotic extensions. The mod-$p$ connective $KU$-cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.