The connective

Pub Date : 2023-12-11 DOI:10.1017/s0017089523000423
Donald M. Davis, W. Stephen Wilson
{"title":"The connective","authors":"Donald M. Davis, W. Stephen Wilson","doi":"10.1017/s0017089523000423","DOIUrl":null,"url":null,"abstract":"<p>We compute <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$ku^*\\left(K\\!\\left({\\mathbb{Z}}_p,2\\right)\\right)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$ku_*\\left(K\\!\\left({\\mathbb{Z}}_p,2\\right)\\right)$</span></span></img></span></span>, the connective <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$KU$</span></span></img></span></span>-cohomology and connective <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$KU$</span></span></img></span></span>-homology groups of the mod-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> Eilenberg–MacLane space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K\\!\\left({\\mathbb{Z}}_p,2\\right)$</span></span></img></span></span>, using the Adams spectral sequence. We obtain a striking interaction between <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$h_0$</span></span></img></span></span>-extensions and exotic extensions. The mod-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> connective <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207164304020-0554:S0017089523000423:S0017089523000423_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$KU$</span></span></img></span></span>-cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We compute Abstract Image$ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ and Abstract Image$ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$, the connective Abstract Image$KU$-cohomology and connective Abstract Image$KU$-homology groups of the mod-Abstract Image$p$ Eilenberg–MacLane space Abstract Image$K\!\left({\mathbb{Z}}_p,2\right)$, using the Adams spectral sequence. We obtain a striking interaction between Abstract Image$h_0$-extensions and exotic extensions. The mod-Abstract Image$p$ connective Abstract Image$KU$-cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.

分享
查看原文
连接词
我们计算$ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$和$ku_*\left(K\!\left({\mathbb{Z}}_p,2\right))$、模-$p$艾伦伯格-麦克莱恩空间 $K\!我们得到了 $h_0$ 扩展与奇异扩展之间的惊人互动。为了在积分群中建立高微分和奇异扩展,我们需要在其他地方计算出模-$p$连通$KU$-同调群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信