Classifying spaces for families of abelian subgroups of braid groups, RAAGs and graphs of abelian groups

Pub Date : 2024-01-11 DOI:10.1017/s0017089523000496
Porfirio L. León Álvarez
{"title":"Classifying spaces for families of abelian subgroups of braid groups, RAAGs and graphs of abelian groups","authors":"Porfirio L. León Álvarez","doi":"10.1017/s0017089523000496","DOIUrl":null,"url":null,"abstract":"<p>Given a group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> and an integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n\\geq 0$</span></span></img></span></span>, we consider the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal F}_n$</span></span></img></span></span> of all virtually abelian subgroups of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{rank}$</span></span></img></span></span> at most <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>. In this article, we prove that for each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$n\\ge 2$</span></span></img></span></span> the Bredon cohomology, with respect to the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal F}_n$</span></span></img></span></span>, of a free abelian group with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{rank}$</span></span></img></span></span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$k \\gt n$</span></span></span></span> is nontrivial in dimension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$k+n$</span></span></span></span>; this answers a question of Corob Cook et al. (Homology Homotopy Appl. <span>19</span>(2) (2017), 83–87, Question 2.7). As an application, we compute the minimal dimension of a classifying space for the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>${\\mathcal F}_n$</span></span></span></span> for braid groups, right-angled Artin groups, and graphs of groups whose vertex groups are infinite finitely generated virtually abelian groups, for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110064323589-0660:S0017089523000496:S0017089523000496_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$n\\ge 2$</span></span></span></span>. The main tools that we use are the Mayer–Vietoris sequence for Bredon cohomology, Bass–Serre theory, and the Lück–Weiermann construction.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a group Abstract Image$G$ and an integer Abstract Image$n\geq 0$, we consider the family Abstract Image${\mathcal F}_n$ of all virtually abelian subgroups of Abstract Image$G$ of Abstract Image$\textrm{rank}$ at most Abstract Image$n$. In this article, we prove that for each Abstract Image$n\ge 2$ the Bredon cohomology, with respect to the family Abstract Image${\mathcal F}_n$, of a free abelian group with Abstract Image$\textrm{rank}$ Abstract Image$k \gt n$ is nontrivial in dimension Abstract Image$k+n$; this answers a question of Corob Cook et al. (Homology Homotopy Appl. 19(2) (2017), 83–87, Question 2.7). As an application, we compute the minimal dimension of a classifying space for the family Abstract Image${\mathcal F}_n$ for braid groups, right-angled Artin groups, and graphs of groups whose vertex groups are infinite finitely generated virtually abelian groups, for all Abstract Image$n\ge 2$. The main tools that we use are the Mayer–Vietoris sequence for Bredon cohomology, Bass–Serre theory, and the Lück–Weiermann construction.

分享
查看原文
辫状群无性子群族、RAAG 和无性群图的分类空间
给定一个群 $G$ 和一个整数 $n\geq 0$,我们考虑 $G$ 的所有最多达 $n$ 的 virtually abelian 子群的族 ${\mathcal F}_n$ 。在这篇文章中,我们证明对于每个 $n\ge 2$ 的自由无边群,其关于族 ${mathcal F}_n$ 的 Bredon 同调,其 $\textrm{rank}$ $k \gt n$ 在维度 $k+n$ 中是非微观的;这回答了 Corob Cook 等人的一个问题(《同调同构应用》19(2) (2017), 83-87, 问题 2.7)。作为一个应用,我们计算了辫子群、直角阿汀群以及顶点群是无限有限生成的虚拟无性群的图的族${\mathcal F}_n$的分类空间的最小维度,适用于所有$n\ge 2$。我们使用的主要工具是布雷顿同调的 Mayer-Vietoris 序列、Bass-Serre 理论和 Lück-Weiermann 构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信