求助PDF
{"title":"阿贝尔绝对伽罗瓦群","authors":"Moshe Jarden","doi":"10.1017/s0017089524000028","DOIUrl":null,"url":null,"abstract":"Generalizing a result of Wulf-Dieter Geyer in his thesis, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline1.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a finitely generated extension of transcendence degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline2.png\" /> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a global field and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline3.png\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a closed abelian subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline4.png\" /> <jats:tex-math> $\\textrm{Gal}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline5.png\" /> <jats:tex-math> ${\\mathrm{rank}}(A)\\le r+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline6.png\" /> <jats:tex-math> $\\mathrm{char}(K)=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline7.png\" /> <jats:tex-math> ${\\hat{\\mathbb{Z}}}^{r+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is isomorphic to a closed subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000028_inline8.png\" /> <jats:tex-math> $\\textrm{Gal}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abelian absolute Galois groups\",\"authors\":\"Moshe Jarden\",\"doi\":\"10.1017/s0017089524000028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalizing a result of Wulf-Dieter Geyer in his thesis, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000028_inline1.png\\\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a finitely generated extension of transcendence degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000028_inline2.png\\\" /> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a global field and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000028_inline3.png\\\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a closed abelian subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000028_inline4.png\\\" /> <jats:tex-math> $\\\\textrm{Gal}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000028_inline5.png\\\" /> <jats:tex-math> ${\\\\mathrm{rank}}(A)\\\\le r+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000028_inline6.png\\\" /> <jats:tex-math> $\\\\mathrm{char}(K)=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000028_inline7.png\\\" /> <jats:tex-math> ${\\\\hat{\\\\mathbb{Z}}}^{r+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is isomorphic to a closed subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000028_inline8.png\\\" /> <jats:tex-math> $\\\\textrm{Gal}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089524000028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用