Maciej Borodzik, Anthony Conway, Wojciech Politarczyk
{"title":"扭曲布兰奇菲尔德配对和扭曲签名 III:应用","authors":"Maciej Borodzik, Anthony Conway, Wojciech Politarczyk","doi":"10.1017/s0017089524000077","DOIUrl":null,"url":null,"abstract":"This paper describes how to compute algorithmically certain twisted signature invariants of a knot <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000077_inline1.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> using twisted Blanchfield forms. An illustration of the algorithm is implemented on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000077_inline2.png\" /> <jats:tex-math> $(2,q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-torus knots. Additionally, using satellite formulas for these invariants, we also show how to obstruct the sliceness of certain iterated torus knots.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"39 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted Blanchfield pairings and twisted signatures III: Applications\",\"authors\":\"Maciej Borodzik, Anthony Conway, Wojciech Politarczyk\",\"doi\":\"10.1017/s0017089524000077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes how to compute algorithmically certain twisted signature invariants of a knot <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000077_inline1.png\\\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> using twisted Blanchfield forms. An illustration of the algorithm is implemented on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000077_inline2.png\\\" /> <jats:tex-math> $(2,q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-torus knots. Additionally, using satellite formulas for these invariants, we also show how to obstruct the sliceness of certain iterated torus knots.\",\"PeriodicalId\":50417,\"journal\":{\"name\":\"Glasgow Mathematical Journal\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasgow Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089524000077\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Twisted Blanchfield pairings and twisted signatures III: Applications
This paper describes how to compute algorithmically certain twisted signature invariants of a knot $K$ using twisted Blanchfield forms. An illustration of the algorithm is implemented on $(2,q)$ -torus knots. Additionally, using satellite formulas for these invariants, we also show how to obstruct the sliceness of certain iterated torus knots.
期刊介绍:
Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics.
The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.