求助PDF
{"title":"准遗传范畴上的三角矩阵范畴","authors":"Rafael Francisco Ochoa De La Cruz, Martin Ortíz Morales, Valente Santiago Vargas","doi":"10.1017/s0017089524000053","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the lower triangular matrix category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline1.png\" /> <jats:tex-math> $\\Lambda =\\left [ \\begin{smallmatrix} \\mathcal{T}&0\\\\ M&\\mathcal{U} \\end{smallmatrix} \\right ]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline2.png\" /> <jats:tex-math> $\\mathcal{T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline3.png\" /> <jats:tex-math> $\\mathcal{U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline4.png\" /> <jats:tex-math> $\\textrm{Hom}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-finite, Krull–Schmidt <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline5.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-quasi-hereditary categories and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline6.png\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline7.png\" /> <jats:tex-math> $\\mathcal{U}\\otimes _K \\mathcal{T}^{op}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline8.png\" /> <jats:tex-math> $_\\Lambda \\Delta$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-filtered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline9.png\" /> <jats:tex-math> $\\Lambda$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triangular matrix categories over quasi-hereditary categories\",\"authors\":\"Rafael Francisco Ochoa De La Cruz, Martin Ortíz Morales, Valente Santiago Vargas\",\"doi\":\"10.1017/s0017089524000053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that the lower triangular matrix category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline1.png\\\" /> <jats:tex-math> $\\\\Lambda =\\\\left [ \\\\begin{smallmatrix} \\\\mathcal{T}&0\\\\\\\\ M&\\\\mathcal{U} \\\\end{smallmatrix} \\\\right ]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline2.png\\\" /> <jats:tex-math> $\\\\mathcal{T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline3.png\\\" /> <jats:tex-math> $\\\\mathcal{U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline4.png\\\" /> <jats:tex-math> $\\\\textrm{Hom}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-finite, Krull–Schmidt <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline5.png\\\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-quasi-hereditary categories and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline6.png\\\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline7.png\\\" /> <jats:tex-math> $\\\\mathcal{U}\\\\otimes _K \\\\mathcal{T}^{op}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline8.png\\\" /> <jats:tex-math> $_\\\\Lambda \\\\Delta$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-filtered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000053_inline9.png\\\" /> <jats:tex-math> $\\\\Lambda$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089524000053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用