{"title":"Galois points and Cremona transformations","authors":"Ahmed Abouelsaad","doi":"10.1017/s0017089524000090","DOIUrl":null,"url":null,"abstract":"In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline1.png\" /> <jats:tex-math> $\\mathrm{Bir}(\\mathbb{P}^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that if the Galois group has order at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline2.png\" /> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, it always extends to a subgroup of the Jonquières group associated with the point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline3.png\" /> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Conversely, with a degree of at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline4.png\" /> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline5.png\" /> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to $\mathrm{Bir}(\mathbb{P}^2)$ . We prove that if the Galois group has order at most $3$ , it always extends to a subgroup of the Jonquières group associated with the point $P$ . Conversely, with a degree of at least $4$ , we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to $P$ . In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.