{"title":"迭代单色群族的最大子群","authors":"Karthika Rajeev, Anitha Thillaisundaram","doi":"10.1017/s0017089524000120","DOIUrl":null,"url":null,"abstract":"The Basilica group is a well-known 2-generated weakly branch, but not branch, group acting on the binary rooted tree. Recently, a more general form of the Basilica group has been investigated by Petschick and Rajeev, which is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000120_inline1.png\" /> <jats:tex-math> $s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generated weakly branch, but not branch, group that acts on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000120_inline2.png\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-adic tree, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000120_inline3.png\" /> <jats:tex-math> $s,m\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A larger family of groups, which contains these generalised Basilica groups, is the family of iterated monodromy groups. With the new developments by Francoeur, the study of the existence of maximal subgroups of infinite index has been extended from branch groups to weakly branch groups. Here we show that a subfamily of iterated monodromy groups, which more closely resemble the generalised Basilica groups, have maximal subgroups only of finite index.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"10 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal subgroups of a family of iterated monodromy groups\",\"authors\":\"Karthika Rajeev, Anitha Thillaisundaram\",\"doi\":\"10.1017/s0017089524000120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Basilica group is a well-known 2-generated weakly branch, but not branch, group acting on the binary rooted tree. Recently, a more general form of the Basilica group has been investigated by Petschick and Rajeev, which is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000120_inline1.png\\\" /> <jats:tex-math> $s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generated weakly branch, but not branch, group that acts on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000120_inline2.png\\\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-adic tree, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000120_inline3.png\\\" /> <jats:tex-math> $s,m\\\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A larger family of groups, which contains these generalised Basilica groups, is the family of iterated monodromy groups. With the new developments by Francoeur, the study of the existence of maximal subgroups of infinite index has been extended from branch groups to weakly branch groups. Here we show that a subfamily of iterated monodromy groups, which more closely resemble the generalised Basilica groups, have maximal subgroups only of finite index.\",\"PeriodicalId\":50417,\"journal\":{\"name\":\"Glasgow Mathematical Journal\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasgow Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089524000120\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000120","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Maximal subgroups of a family of iterated monodromy groups
The Basilica group is a well-known 2-generated weakly branch, but not branch, group acting on the binary rooted tree. Recently, a more general form of the Basilica group has been investigated by Petschick and Rajeev, which is an $s$ -generated weakly branch, but not branch, group that acts on the $m$ -adic tree, for $s,m\ge 2$ . A larger family of groups, which contains these generalised Basilica groups, is the family of iterated monodromy groups. With the new developments by Francoeur, the study of the existence of maximal subgroups of infinite index has been extended from branch groups to weakly branch groups. Here we show that a subfamily of iterated monodromy groups, which more closely resemble the generalised Basilica groups, have maximal subgroups only of finite index.
期刊介绍:
Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics.
The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.