Thinness of some hypergeometric groups in

IF 0.5 4区 数学 Q3 MATHEMATICS
Sandip Singh, Shashank Vikram Singh
{"title":"Thinness of some hypergeometric groups in","authors":"Sandip Singh, Shashank Vikram Singh","doi":"10.1017/s0017089524000168","DOIUrl":null,"url":null,"abstract":"We show the thinness of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000168_inline2.png\"/> <jats:tex-math> $7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000168_inline3.png\"/> <jats:tex-math> $40$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hypergeometric groups having a maximally unipotent monodromy in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000168_inline4.png\"/> <jats:tex-math> $\\mathrm{Sp}(6)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"155 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show the thinness of $7$ of the $40$ hypergeometric groups having a maximally unipotent monodromy in $\mathrm{Sp}(6)$ .
一些超几何群的稀疏性在
我们证明了$\mathrm{Sp}(6)$中具有最大单势单色性的$40$超几何群中$7$的稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics. The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信