超椭圆曲线的模型和积分微分

Pub Date : 2024-03-18 DOI:10.1017/s001708952400003x
Simone Muselli
{"title":"超椭圆曲线的模型和积分微分","authors":"Simone Muselli","doi":"10.1017/s001708952400003x","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline1.png\" /> <jats:tex-math> $C\\; : \\;y^2=f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a hyperelliptic curve of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline2.png\" /> <jats:tex-math> $g\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, defined over a complete discretely valued field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline3.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with ring of integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline4.png\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under certain conditions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline5.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mild when residue characteristic is not <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline6.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we explicitly construct the minimal regular model with normal crossings <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline7.png\" /> <jats:tex-math> $\\mathcal{C}/O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline8.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the same setting we determine a basis of integral differentials of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline9.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline10.png\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-basis for the global sections of the relative dualising sheaf <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline11.png\" /> <jats:tex-math> $\\omega _{\\mathcal{C}/O_K}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Models and integral differentials of hyperelliptic curves\",\"authors\":\"Simone Muselli\",\"doi\":\"10.1017/s001708952400003x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline1.png\\\" /> <jats:tex-math> $C\\\\; : \\\\;y^2=f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a hyperelliptic curve of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline2.png\\\" /> <jats:tex-math> $g\\\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, defined over a complete discretely valued field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline3.png\\\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with ring of integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline4.png\\\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under certain conditions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline5.png\\\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mild when residue characteristic is not <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline6.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we explicitly construct the minimal regular model with normal crossings <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline7.png\\\" /> <jats:tex-math> $\\\\mathcal{C}/O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline8.png\\\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the same setting we determine a basis of integral differentials of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline9.png\\\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline10.png\\\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-basis for the global sections of the relative dualising sheaf <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline11.png\\\" /> <jats:tex-math> $\\\\omega _{\\\\mathcal{C}/O_K}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s001708952400003x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001708952400003x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $C\; :\y^2=f(x)$是一条属$g\geq 1$的超椭圆曲线,定义在一个完整的离散值域$K$上,其整数环为$O_K$。在 $C$ 的某些条件下 , 当残差特征不为 2$ 时 , 我们明确地构造了具有法线交叉 $\mathcal{C}/O_K$ 的最小正则模型 .在同样的背景下,我们确定了$C$的积分微分基础,即相对对偶化剪$\omega _{\mathcal{C}/O_K}$的全局截面的$O_K$基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Models and integral differentials of hyperelliptic curves
Let $C\; : \;y^2=f(x)$ be a hyperelliptic curve of genus $g\geq 1$ , defined over a complete discretely valued field $K$ , with ring of integers $O_K$ . Under certain conditions on $C$ , mild when residue characteristic is not $2$ , we explicitly construct the minimal regular model with normal crossings $\mathcal{C}/O_K$ of $C$ . In the same setting we determine a basis of integral differentials of $C$ , that is an $O_K$ -basis for the global sections of the relative dualising sheaf $\omega _{\mathcal{C}/O_K}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信