求助PDF
{"title":"超椭圆曲线的模型和积分微分","authors":"Simone Muselli","doi":"10.1017/s001708952400003x","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline1.png\" /> <jats:tex-math> $C\\; : \\;y^2=f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a hyperelliptic curve of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline2.png\" /> <jats:tex-math> $g\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, defined over a complete discretely valued field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline3.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with ring of integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline4.png\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under certain conditions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline5.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mild when residue characteristic is not <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline6.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we explicitly construct the minimal regular model with normal crossings <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline7.png\" /> <jats:tex-math> $\\mathcal{C}/O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline8.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the same setting we determine a basis of integral differentials of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline9.png\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline10.png\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-basis for the global sections of the relative dualising sheaf <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400003X_inline11.png\" /> <jats:tex-math> $\\omega _{\\mathcal{C}/O_K}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Models and integral differentials of hyperelliptic curves\",\"authors\":\"Simone Muselli\",\"doi\":\"10.1017/s001708952400003x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline1.png\\\" /> <jats:tex-math> $C\\\\; : \\\\;y^2=f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a hyperelliptic curve of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline2.png\\\" /> <jats:tex-math> $g\\\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, defined over a complete discretely valued field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline3.png\\\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with ring of integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline4.png\\\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under certain conditions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline5.png\\\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mild when residue characteristic is not <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline6.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we explicitly construct the minimal regular model with normal crossings <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline7.png\\\" /> <jats:tex-math> $\\\\mathcal{C}/O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline8.png\\\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the same setting we determine a basis of integral differentials of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline9.png\\\" /> <jats:tex-math> $C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline10.png\\\" /> <jats:tex-math> $O_K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-basis for the global sections of the relative dualising sheaf <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400003X_inline11.png\\\" /> <jats:tex-math> $\\\\omega _{\\\\mathcal{C}/O_K}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s001708952400003x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001708952400003x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用