{"title":"关于根构造的量子 K 理论的说明","authors":"Hsian-Hua Tseng","doi":"10.1017/s0017089524000089","DOIUrl":null,"url":null,"abstract":"We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000089_inline1.png\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> K-theoretic Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000089_inline2.png\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"8 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on quantum K-theory of root constructions\",\"authors\":\"Hsian-Hua Tseng\",\"doi\":\"10.1017/s0017089524000089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000089_inline1.png\\\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> K-theoretic Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000089_inline2.png\\\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":50417,\"journal\":{\"name\":\"Glasgow Mathematical Journal\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasgow Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089524000089\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑根构造的 K 理论 Gromov-Witten 理论。我们计算了一些0元属根球的K理论格罗莫夫-维滕不变式。我们还得到了 K 理论中 0$ 属的相对/双折叠对应关系。
We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus $0$ K-theoretic Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in genus $0$ .
期刊介绍:
Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics.
The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.