{"title":"关于根构造的量子 K 理论的说明","authors":"Hsian-Hua Tseng","doi":"10.1017/s0017089524000089","DOIUrl":null,"url":null,"abstract":"We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000089_inline1.png\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> K-theoretic Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000089_inline2.png\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on quantum K-theory of root constructions\",\"authors\":\"Hsian-Hua Tseng\",\"doi\":\"10.1017/s0017089524000089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000089_inline1.png\\\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> K-theoretic Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000089_inline2.png\\\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089524000089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑根构造的 K 理论 Gromov-Witten 理论。我们计算了一些0元属根球的K理论格罗莫夫-维滕不变式。我们还得到了 K 理论中 0$ 属的相对/双折叠对应关系。
We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus $0$ K-theoretic Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in genus $0$ .