伽罗瓦点和克雷莫纳变换

Pub Date : 2024-04-11 DOI:10.1017/s0017089524000090
Ahmed Abouelsaad
{"title":"伽罗瓦点和克雷莫纳变换","authors":"Ahmed Abouelsaad","doi":"10.1017/s0017089524000090","DOIUrl":null,"url":null,"abstract":"In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline1.png\" /> <jats:tex-math> $\\mathrm{Bir}(\\mathbb{P}^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that if the Galois group has order at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline2.png\" /> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, it always extends to a subgroup of the Jonquières group associated with the point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline3.png\" /> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Conversely, with a degree of at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline4.png\" /> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000090_inline5.png\" /> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galois points and Cremona transformations\",\"authors\":\"Ahmed Abouelsaad\",\"doi\":\"10.1017/s0017089524000090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000090_inline1.png\\\" /> <jats:tex-math> $\\\\mathrm{Bir}(\\\\mathbb{P}^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that if the Galois group has order at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000090_inline2.png\\\" /> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, it always extends to a subgroup of the Jonquières group associated with the point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000090_inline3.png\\\" /> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Conversely, with a degree of at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000090_inline4.png\\\" /> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000090_inline5.png\\\" /> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089524000090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究平面曲线的伽罗瓦点以及相应伽罗瓦群向 $\mathrm{Bir}(\mathbb{P}^2)$ 的扩展。我们证明,如果伽罗瓦群的阶最多为 $3$,那么它总是扩展到与点 $P$ 相关联的琼基耶斯群的一个子群。反之,如果阶数至少为 $4$,我们证明它是假的。我们提供了一个伽罗瓦扩展的例子,它的伽罗瓦群可以扩展到克雷莫纳变换,但不能扩展到关于 $P$ 的琼基耶尔映射群。此外,我们还给出了一个伽罗瓦扩展的例子,其伽罗瓦群不能扩展到克雷莫纳变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Galois points and Cremona transformations
In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to $\mathrm{Bir}(\mathbb{P}^2)$ . We prove that if the Galois group has order at most $3$ , it always extends to a subgroup of the Jonquières group associated with the point $P$ . Conversely, with a degree of at least $4$ , we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to $P$ . In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信