流形的简单体积,其基本群在无穷远处是可调和的

IF 0.5 4区 数学 Q3 MATHEMATICS
Giuseppe Bargagnati
{"title":"流形的简单体积,其基本群在无穷远处是可调和的","authors":"Giuseppe Bargagnati","doi":"10.1017/s0017089524000107","DOIUrl":null,"url":null,"abstract":"We show that for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline1.png\" /> <jats:tex-math> $n \\neq 1,4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the simplicial volume of an inward tame triangulable open <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline2.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-manifold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline3.png\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with amenable fundamental group at infinity at each end is finite; moreover, we show that if also <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline4.png\" /> <jats:tex-math> $\\pi _1(M)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is amenable, then the simplicial volume of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000107_inline5.png\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplicial volume of manifolds with amenable fundamental group at infinity\",\"authors\":\"Giuseppe Bargagnati\",\"doi\":\"10.1017/s0017089524000107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000107_inline1.png\\\" /> <jats:tex-math> $n \\\\neq 1,4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the simplicial volume of an inward tame triangulable open <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000107_inline2.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-manifold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000107_inline3.png\\\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with amenable fundamental group at infinity at each end is finite; moreover, we show that if also <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000107_inline4.png\\\" /> <jats:tex-math> $\\\\pi _1(M)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is amenable, then the simplicial volume of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089524000107_inline5.png\\\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.\",\"PeriodicalId\":50417,\"journal\":{\"name\":\"Glasgow Mathematical Journal\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasgow Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089524000107\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于 $n \neq 1,4$ ,每一端在无穷远处都有可简化基群的向内驯服的可三角开 $n$ -manifold $M$ 的简体积是有限的;此外,我们还证明,如果 $\pi _1(M)$ 也是可简化的,那么 $M$ 的简体积就会消失。我们证明同样的结果也适用于在无穷处简单相连的有限多端可三角流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplicial volume of manifolds with amenable fundamental group at infinity
We show that for $n \neq 1,4$ , the simplicial volume of an inward tame triangulable open $n$ -manifold $M$ with amenable fundamental group at infinity at each end is finite; moreover, we show that if also $\pi _1(M)$ is amenable, then the simplicial volume of $M$ vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics. The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信