Rafael Francisco Ochoa De La Cruz, Martin Ortíz Morales, Valente Santiago Vargas
{"title":"Triangular matrix categories over quasi-hereditary categories","authors":"Rafael Francisco Ochoa De La Cruz, Martin Ortíz Morales, Valente Santiago Vargas","doi":"10.1017/s0017089524000053","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the lower triangular matrix category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline1.png\" /> <jats:tex-math> $\\Lambda =\\left [ \\begin{smallmatrix} \\mathcal{T}&0\\\\ M&\\mathcal{U} \\end{smallmatrix} \\right ]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline2.png\" /> <jats:tex-math> $\\mathcal{T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline3.png\" /> <jats:tex-math> $\\mathcal{U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline4.png\" /> <jats:tex-math> $\\textrm{Hom}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-finite, Krull–Schmidt <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline5.png\" /> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-quasi-hereditary categories and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline6.png\" /> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline7.png\" /> <jats:tex-math> $\\mathcal{U}\\otimes _K \\mathcal{T}^{op}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline8.png\" /> <jats:tex-math> $_\\Lambda \\Delta$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-filtered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089524000053_inline9.png\" /> <jats:tex-math> $\\Lambda$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"365 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089524000053","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove that the lower triangular matrix category $\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$ , where $\mathcal{T}$ and $\mathcal{U}$ are $\textrm{Hom}$ -finite, Krull–Schmidt $K$ -quasi-hereditary categories and $M$ is an $\mathcal{U}\otimes _K \mathcal{T}^{op}$ -module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the $_\Lambda \Delta$ -filtered $\Lambda$ -modules.
期刊介绍:
Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics.
The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.