{"title":"Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori","authors":"Steven Boyer, Cameron McA. Gordon, Xingru Zhang","doi":"10.1090/memo/1469","DOIUrl":"https://doi.org/10.1090/memo/1469","url":null,"abstract":"<p>We show that if a hyperbolic knot manifold <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> contains an essential twice-punctured torus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with boundary slope <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\">\u0000 <mml:semantics>\u0000 <mml:mi>β<!-- β --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">beta</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and admits a filling with slope <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\u0000 <mml:semantics>\u0000 <mml:mi>α<!-- α --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">alpha</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> producing a Seifert fibred space, then the distance between the slopes <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\u0000 <mml:semantics>\u0000 <mml:mi>α<!-- α --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">alpha</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\">\u0000 <mml:semantics>\u0000 <mml:mi>β<!-- β --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">beta</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is less than or equal to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\u0000 <mml:semantics>\u0000 <mml:mn>5</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> unless <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is the exterior of the figure eight knot. The result is sharp; the bound of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\u0000 <mml:semantics>\u0000 <mml:mn>5</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141216037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subgroup Decomposition in 𝖮𝗎𝗍(𝖥_{𝗇})","authors":"M. Handel, L. Mosher","doi":"10.1090/memo/1280","DOIUrl":"https://doi.org/10.1090/memo/1280","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48171650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Propagating Terraces and the Dynamics of\u0000 Front-Like Solutions of Reaction-Diffusion Equations\u0000 on ℝ","authors":"P. Polácik","doi":"10.1090/memo/1278","DOIUrl":"https://doi.org/10.1090/memo/1278","url":null,"abstract":"We consider semilinear parabolic equations of the form ut = uxx + f(u), x ∈ R, t > 0, where f a C1 function. Assuming that 0 and γ > 0 are constant steady states, we investigate the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x, 0) are near γ for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are both stable, our main theorem shows that at large times, the graph of u(·, t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). We prove this result without requiring monotonicity of u(·, 0) or the nondegeneracy of zeros of f . The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to our theorems, we show that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In our proofs we employ phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x, t), ux(x, t)) : x ∈ R}, t > 0, of the solutions in question.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47138547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}