固有等变稳定同伦理论

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Degrijse, M. Hausmann, W. Luck, Irakli Patchkoria, S. Schwede
{"title":"固有等变稳定同伦理论","authors":"D. Degrijse, M. Hausmann, W. Luck, Irakli Patchkoria, S. Schwede","doi":"10.1090/memo/1432","DOIUrl":null,"url":null,"abstract":"This monograph introduces a framework for genuine proper equivariant stable homotopy theory for Lie groups. The adjective ‘proper’ alludes to the feature that equivalences are tested on compact subgroups, and that the objects are built from equivariant cells with compact isotropy groups; the adjective ‘genuine’ indicates that the theory comes with appropriate transfers and Wirthmüller isomorphisms, and the resulting equivariant cohomology theories support the analog of an \n\n \n \n R\n O\n (\n G\n )\n \n R O(G)\n \n\n-grading.\n\nOur model for genuine proper \n\n \n G\n G\n \n\n-equivariant stable homotopy theory is the category of orthogonal \n\n \n G\n G\n \n\n-spectra; the equivalences are those morphisms that induce isomorphisms of equivariant stable homotopy groups for all compact subgroups of \n\n \n G\n G\n \n\n. This class of \n\n \n \n π\n ∗\n \n \\pi _*\n \n\n-isomorphisms is part of a symmetric monoidal stable model structure, and the associated tensor triangulated homotopy category is compactly generated. Consequently, every orthogonal \n\n \n G\n G\n \n\n-spectrum represents an equivariant cohomology theory on the category of \n\n \n G\n G\n \n\n-spaces. These represented cohomology theories are designed to only depend on the ‘proper \n\n \n G\n G\n \n\n-homotopy type’, tested by fixed points under all compact subgroups.\n\nAn important special case of our theory are infinite discrete groups. For these, our genuine equivariant theory is related to finiteness properties in the sense of geometric group theory; for example, the \n\n \n G\n G\n \n\n-sphere spectrum is a compact object in our triangulated equivariant homotopy category if the universal space for proper \n\n \n G\n G\n \n\n-actions has a finite \n\n \n G\n G\n \n\n-CW-model. For discrete groups, the represented equivariant cohomology theories on finite proper \n\n \n G\n G\n \n\n-CW-complexes admit a more explicit description in terms of parameterized equivariant homotopy theory, suitably stabilized by \n\n \n G\n G\n \n\n-vector bundles. Via this description, we can identify the previously defined \n\n \n G\n G\n \n\n-cohomology theories of equivariant stable cohomotopy and equivariant K-theory as cohomology theories represented by specific orthogonal \n\n \n G\n G\n \n\n-spectra.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Proper Equivariant Stable Homotopy Theory\",\"authors\":\"D. Degrijse, M. Hausmann, W. Luck, Irakli Patchkoria, S. Schwede\",\"doi\":\"10.1090/memo/1432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This monograph introduces a framework for genuine proper equivariant stable homotopy theory for Lie groups. The adjective ‘proper’ alludes to the feature that equivalences are tested on compact subgroups, and that the objects are built from equivariant cells with compact isotropy groups; the adjective ‘genuine’ indicates that the theory comes with appropriate transfers and Wirthmüller isomorphisms, and the resulting equivariant cohomology theories support the analog of an \\n\\n \\n \\n R\\n O\\n (\\n G\\n )\\n \\n R O(G)\\n \\n\\n-grading.\\n\\nOur model for genuine proper \\n\\n \\n G\\n G\\n \\n\\n-equivariant stable homotopy theory is the category of orthogonal \\n\\n \\n G\\n G\\n \\n\\n-spectra; the equivalences are those morphisms that induce isomorphisms of equivariant stable homotopy groups for all compact subgroups of \\n\\n \\n G\\n G\\n \\n\\n. This class of \\n\\n \\n \\n π\\n ∗\\n \\n \\\\pi _*\\n \\n\\n-isomorphisms is part of a symmetric monoidal stable model structure, and the associated tensor triangulated homotopy category is compactly generated. Consequently, every orthogonal \\n\\n \\n G\\n G\\n \\n\\n-spectrum represents an equivariant cohomology theory on the category of \\n\\n \\n G\\n G\\n \\n\\n-spaces. These represented cohomology theories are designed to only depend on the ‘proper \\n\\n \\n G\\n G\\n \\n\\n-homotopy type’, tested by fixed points under all compact subgroups.\\n\\nAn important special case of our theory are infinite discrete groups. For these, our genuine equivariant theory is related to finiteness properties in the sense of geometric group theory; for example, the \\n\\n \\n G\\n G\\n \\n\\n-sphere spectrum is a compact object in our triangulated equivariant homotopy category if the universal space for proper \\n\\n \\n G\\n G\\n \\n\\n-actions has a finite \\n\\n \\n G\\n G\\n \\n\\n-CW-model. For discrete groups, the represented equivariant cohomology theories on finite proper \\n\\n \\n G\\n G\\n \\n\\n-CW-complexes admit a more explicit description in terms of parameterized equivariant homotopy theory, suitably stabilized by \\n\\n \\n G\\n G\\n \\n\\n-vector bundles. Via this description, we can identify the previously defined \\n\\n \\n G\\n G\\n \\n\\n-cohomology theories of equivariant stable cohomotopy and equivariant K-theory as cohomology theories represented by specific orthogonal \\n\\n \\n G\\n G\\n \\n\\n-spectra.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

摘要

这本专著介绍了李群的真真真等变稳定同伦论的一个框架。形容词“proper”暗指等价是在紧致子群上测试的,并且对象是由具有紧致各向同性群的等变单元构建的;形容词“真诚”表示该理论具有适当的转移和Wirthmüller同构,由此产生的等变上同调理论支持类似于R O(G)R O(G)-分级。我们的真真真G-等变稳定同伦论模型是正交G-谱的范畴;等价性是对G G的所有紧子群诱导等变稳定同伦群同构的态射。这类π*\pi_*-同构是对称单oid稳定模型结构的一部分,并且相关的张量三角化仿射范畴是紧生成的。因此,每一个正交的G-谱都代表了G-空间范畴上的等变上同调理论。这些有代表性的上同调理论被设计为仅依赖于“适当的G-同伦型”,由所有紧子群下的不动点检验。我们理论的一个重要特例是无限离散群。因此,我们真正的等变理论与几何群论意义上的有限性性质有关;例如,如果G作用的泛空间具有有限的G-CW模型,则G-球面谱是我们三角等变同伦论范畴中的紧致对象。对于离散群,有限适当G-G-CW复形上的表示等变上同调理论允许用参数化等变同调理论进行更明确的描述,用G-向量丛适当地稳定。通过这种描述,我们可以将先前定义的等变稳定上同调和等变K-理论的G G-上同调理论识别为由特定正交G G-谱表示的上同调论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proper Equivariant Stable Homotopy Theory
This monograph introduces a framework for genuine proper equivariant stable homotopy theory for Lie groups. The adjective ‘proper’ alludes to the feature that equivalences are tested on compact subgroups, and that the objects are built from equivariant cells with compact isotropy groups; the adjective ‘genuine’ indicates that the theory comes with appropriate transfers and Wirthmüller isomorphisms, and the resulting equivariant cohomology theories support the analog of an R O ( G ) R O(G) -grading. Our model for genuine proper G G -equivariant stable homotopy theory is the category of orthogonal G G -spectra; the equivalences are those morphisms that induce isomorphisms of equivariant stable homotopy groups for all compact subgroups of G G . This class of π ∗ \pi _* -isomorphisms is part of a symmetric monoidal stable model structure, and the associated tensor triangulated homotopy category is compactly generated. Consequently, every orthogonal G G -spectrum represents an equivariant cohomology theory on the category of G G -spaces. These represented cohomology theories are designed to only depend on the ‘proper G G -homotopy type’, tested by fixed points under all compact subgroups. An important special case of our theory are infinite discrete groups. For these, our genuine equivariant theory is related to finiteness properties in the sense of geometric group theory; for example, the G G -sphere spectrum is a compact object in our triangulated equivariant homotopy category if the universal space for proper G G -actions has a finite G G -CW-model. For discrete groups, the represented equivariant cohomology theories on finite proper G G -CW-complexes admit a more explicit description in terms of parameterized equivariant homotopy theory, suitably stabilized by G G -vector bundles. Via this description, we can identify the previously defined G G -cohomology theories of equivariant stable cohomotopy and equivariant K-theory as cohomology theories represented by specific orthogonal G G -spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信